"N차원 공의 부피"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
(피타고라스님이 이 페이지의 이름을 n차원 구의 부피로 바꾸었습니다.) |
(피타고라스님이 이 페이지의 이름을 n차원 공의 부피로 바꾸었습니다.) |
(차이 없음)
|
2011년 11월 10일 (목) 03:00 판
간단한 소개
- 반지름 r인 n차원 공이란, n차원에서 다음 부등식을 만족시키는 점들의 집합, 또는 그 평행이동을 말함..
- \(x_1^2+\cdots+x_n^2\leq\ r^2\)
- 1차원 공= [-r,r]
- 2차원 공 = 반지름 r인 원판
- 1차원 공의 부피는 \(2r\).
- 2차원 공의 부피는 \(\pi r^2\).
- 3차원 공의 부피는 \(\frac{4}{3}\pi r^3\).
- ...
- n차원 공의 부피는 얼마가 될까?
- n이 짝수일 때는, \(\frac{(2\pi)^{n/2}\,r^n}{2 \cdot 4 \cdots n}\)
- n이 홀수일 때는, \(\frac{2(2\pi)^{(n-1)/2}\,r^n}{1 \cdot 3 \cdots n}\)
- 일반적으로는 다음 식으로 표현할 수 있다.
\(\large\frac{\pi^{n/2}}{\Gamma(\frac{n}{2}+1)}r^n\)
관련된 학부 과목과 미리 알고 있으면 좋은 것들
사전 형태의 자료
- Gamma Function Derivation of n-Sphere Volumes
- Greg Huber
- The American Mathematical Monthly, Vol. 89, No. 5 (May, 1982), pp. 301-302
- Volume of an n-Dimensional Sphere
- H. P. Evans
- The American Mathematical Monthly, Vol. 54, No. 10, Part 1 (Dec., 1947), pp. 592-594