"모듈라 형식(modular forms)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
1번째 줄: | 1번째 줄: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==개요== | ==개요== | ||
61번째 줄: | 53번째 줄: | ||
<math>d(\frac{az+b}{cz+d})=\frac{(acz+ad-acz-bc)}{(cz+d)^2}dz=(cz+d)^{-2}dz</math> | <math>d(\frac{az+b}{cz+d})=\frac{(acz+ad-acz-bc)}{(cz+d)^2}dz=(cz+d)^{-2}dz</math> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
89번째 줄: | 65번째 줄: | ||
==관련된 항목들== | ==관련된 항목들== | ||
− | + | * [[모듈라 형식(modular forms)]] | |
− | * [[자코비 세타함수]] | + | * [[아이젠슈타인 급수(Eisenstein series)]] |
− | * [[격자의 세타함수]] | + | * [[판별식 (discriminant) 함수와 라마누잔의 타우 함수(tau function)]] |
− | + | * [[자코비 세타함수]] | |
− | + | * [[격자의 세타함수]] | |
− | + | * [[헤케 연산자(Hecke operator)]] | |
2013년 1월 25일 (금) 09:47 판
개요
- 푸앵카레 상반평면에서 정의된 해석함수
- 모듈라 성질과 cusp에서의 푸리에전개를 가짐
- 별다른 언급이 없을 경우 \(q=e^{2\pi i\tau}\) 를 의미함
모듈라 성질
- weight 2k 인 모듈라 형식
- 모듈라 군(modular group)의 원소에 대하여 다음 조건을 만족시킴\[f \left( \frac{ a\tau +b}{ c\tau + d} \right) = (c\tau +d)^{2k} f(\tau)\]
푸리에 전개
- cusp에서도 해석함수의 성질을 갖도록 해주기 위한 조건\[f(\tau) = \sum_{n=0}^\infty a_n e^{2i\pi n\tau}\]
중요한 예
\(\Delta(\tau)=q\prod_{n>0}(1-q^n)^{24}=q-24q+252q^2+\cdots\)
구조 정리
(정리)
\(\mathbb{C}[E_4,E_6]=\oplus M_k\)
\(\{E_6^2, \Delta\}\)는 weight 12인 모듈라 형식의 기저가 된다.
메모
\(d(\frac{az+b}{cz+d})=\frac{(acz+ad-acz-bc)}{(cz+d)^2}dz=(cz+d)^{-2}dz\)
역사
관련된 항목들
- 모듈라 형식(modular forms)
- 아이젠슈타인 급수(Eisenstein series)
- 판별식 (discriminant) 함수와 라마누잔의 타우 함수(tau function)
- 자코비 세타함수
- 격자의 세타함수
- 헤케 연산자(Hecke operator)
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://ko.wikipedia.org/wiki/보형형식
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문