"Q-감마함수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
15번째 줄: 15번째 줄:
 
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">정의</h5>
 
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">정의</h5>
  
* [[q-팩토리얼]]<br><math>[n]_q!= \frac{(q;q)_n}{(1-q)^n}=\frac{(1-q)_q^n}{(1-q)^n}</math><br><math>[n]_q!= \frac{(q;q)_n}{(1-q)^n}= \frac{(q;q)_{\infty}}{(1-q)^n(q^{n+1};q)_{\infty}}</math><br>
+
* [[q-팩토리얼]]<br><math>[n]_q!= \frac{(q;q)_n}{(1-q)^n}=\frac{(1-q)_q^n}{(1-q)^n}</math><br>
* <math>[n]_q!= \frac{(q;q)_n}{(1-q)^n}=\frac{(1-q)_q^n}{(1-q)^n}</math><br>
+
* [[Pochhammer 기호와 캐츠(Kac) 기호]]<br><math>{(1-a)_q^n}:=(a;q)_n = \frac{(a;q)_{\infty}}{(aq^n;q)_{\infty}}=\frac{(1-a)_q^{\infty}}{(1-aq^n)_q^{\infty}}</math><br>  <br><math>[n]_q!= \frac{(q;q)_n}{(1-q)^n}= \frac{(q;q)_{\infty}}{(1-q)^n(q^{n+1};q)_{\infty}}</math><br><math>[n]_q!= \frac{(q;q)_n}{(1-q)^n}=\frac{(1-q)_q^n}{(1-q)^n}</math><br>
 +
 
 +
 
  
 
 
 
 

2009년 12월 18일 (금) 16:56 판

이 항목의 스프링노트 원문주소

 

 

개요
  • #의 q-analogue

 

 

정의
  • q-팩토리얼
    \([n]_q!= \frac{(q;q)_n}{(1-q)^n}=\frac{(1-q)_q^n}{(1-q)^n}\)
  • Pochhammer 기호와 캐츠(Kac) 기호
    \({(1-a)_q^n}:=(a;q)_n = \frac{(a;q)_{\infty}}{(aq^n;q)_{\infty}}=\frac{(1-a)_q^{\infty}}{(1-aq^n)_q^{\infty}}\)
     
    \([n]_q!= \frac{(q;q)_n}{(1-q)^n}= \frac{(q;q)_{\infty}}{(1-q)^n(q^{n+1};q)_{\infty}}\)
    \([n]_q!= \frac{(q;q)_n}{(1-q)^n}=\frac{(1-q)_q^n}{(1-q)^n}\)

 

 

 

 

재미있는 사실

 

 

 

역사

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

관련도서 및 추천도서

 

 

관련기사

 

 

블로그