"Q-감마함수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “<br><math>” 문자열을 “:<math>” 문자열로)
27번째 줄: 27번째 줄:
 
==정의를 이렇게 하는 이유==
 
==정의를 이렇게 하는 이유==
  
*  감마함수가 팩토리얼의 확장이므로 [[q-팩토리얼]]의 정의를 이용하자<br><math>[n]_q!= \frac{(q;q)_n}{(1-q)^n}=\frac{(1-q)_q^n}{(1-q)^n}</math><br>
+
*  감마함수가 팩토리얼의 확장이므로 [[q-팩토리얼]]의 정의를 이용하자:<math>[n]_q!= \frac{(q;q)_n}{(1-q)^n}=\frac{(1-q)_q^n}{(1-q)^n}</math><br>
* [[q-Pochhammer 기호]] 를 사용하여 더 일반적인 경우의 n 에 대하여 쓸 수 있다<br><math>[n]_q!= \frac{(q;q)_n}{(1-q)^n}= \frac{(q;q)_{\infty}}{(1-q)^n(q^{n+1};q)_{\infty}}</math><br>[[Pochhammer 기호와 캐츠(Kac) 기호|캐츠(Kac) 기호]] 를 써서 표현하면,<br><math>[n]_q!=\frac{(1-q)_q^n}{(1-q)^n}=\frac{(1-q)_q^{\infty}}{(1-q)^n(1-q^{n+1})_q^{\infty}}</math><br>
+
* [[q-Pochhammer 기호]] 를 사용하여 더 일반적인 경우의 n 에 대하여 쓸 수 있다:<math>[n]_q!= \frac{(q;q)_n}{(1-q)^n}= \frac{(q;q)_{\infty}}{(1-q)^n(q^{n+1};q)_{\infty}}</math><br>[[Pochhammer 기호와 캐츠(Kac) 기호|캐츠(Kac) 기호]] 를 써서 표현하면,:<math>[n]_q!=\frac{(1-q)_q^n}{(1-q)^n}=\frac{(1-q)_q^{\infty}}{(1-q)^n(1-q^{n+1})_q^{\infty}}</math><br>
 
*  위의 식은 <math>n</math>이 반드시 자연수가 아니어도 성립하므로, q-감마함수를 다음과 같이 정의할 수 있다  
 
*  위의 식은 <math>n</math>이 반드시 자연수가 아니어도 성립하므로, q-감마함수를 다음과 같이 정의할 수 있다  
 
:<math>\Gamma_q(z)= \frac{(q;q)_{\infty}}{(q^{z};q)_{\infty}}(1-q)^{1-z}</math>
 
:<math>\Gamma_q(z)= \frac{(q;q)_{\infty}}{(q^{z};q)_{\infty}}(1-q)^{1-z}</math>

2013년 1월 12일 (토) 09:08 판

이 항목의 스프링노트 원문주소

 

 

개요

 

 

정의

  • q-감마함수를 다음과 같이 정의

\[\Gamma_q(z)= \frac{(q;q)_{\infty}}{(q^{z};q)_{\infty}}(1-q)^{1-z}\]

  • 자연수 n에 대하여, \(z=n+1\) 일 때,

\[\Gamma_q(n+1)= \frac{(q;q)_{\infty}}{(q^{n+1};q)_{\infty}}(1-q)^{-n}= \frac{(q;q)_n}{(1-q)^n}=[n]_q!\]

 

 

정의를 이렇게 하는 이유

  • 감마함수가 팩토리얼의 확장이므로 q-팩토리얼의 정의를 이용하자\[[n]_q!= \frac{(q;q)_n}{(1-q)^n}=\frac{(1-q)_q^n}{(1-q)^n}\]
  • q-Pochhammer 기호 를 사용하여 더 일반적인 경우의 n 에 대하여 쓸 수 있다\[[n]_q!= \frac{(q;q)_n}{(1-q)^n}= \frac{(q;q)_{\infty}}{(1-q)^n(q^{n+1};q)_{\infty}}\]
    캐츠(Kac) 기호 를 써서 표현하면,\[[n]_q!=\frac{(1-q)_q^n}{(1-q)^n}=\frac{(1-q)_q^{\infty}}{(1-q)^n(1-q^{n+1})_q^{\infty}}\]
  • 위의 식은 \(n\)이 반드시 자연수가 아니어도 성립하므로, q-감마함수를 다음과 같이 정의할 수 있다

\[\Gamma_q(z)= \frac{(q;q)_{\infty}}{(q^{z};q)_{\infty}}(1-q)^{1-z}\] \[\Gamma_q(z)= \frac{(1-q)_q^{\infty}}{(1-q^{z})_q^{\infty}}(1-q)^{1-z}\] \[\Gamma_q(z) = (1-q)^{1-z}\prod_{n=0}^\infty \frac{1-q^{n+1}}{1-q^{z+n}}. \]

 

 

잭슨 적분과 q-감마함수

재미있는 사실

 

 

 

역사

 

 

메모

 

 

관련된 항목들

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 


 

 


 

 

블로그