"모듈라 형식(modular forms)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
86번째 줄: 86번째 줄:
 
==리뷰논문, 에세이, 강의노트==
 
==리뷰논문, 에세이, 강의노트==
 
* Finch, [http://www.people.fas.harvard.edu/~sfinch/csolve/frs.pdf Modular Forms on $SL_2(\mathbb{Z})$]
 
* Finch, [http://www.people.fas.harvard.edu/~sfinch/csolve/frs.pdf Modular Forms on $SL_2(\mathbb{Z})$]
 
+
* Vaughan, [http://www.personal.psu.edu/users/r/c/rcv4/567c09.pdf modular forms I], [http://www.personal.psu.edu/users/r/c/rcv4/567c10.pdf modular forms II]

2013년 8월 29일 (목) 04:30 판

개요

  • 푸앵카레 상반평면에서 정의된 해석함수
  • 모듈라 성질과 cusp에서의 푸리에전개를 가짐
  • 별다른 언급이 없을 경우 \(q=e^{2\pi i\tau}\) 를 의미함

 

 

모듈라 성질

  • weight 2k 인 모듈라 형식
  • 모듈라 군(modular group)의 원소에 대하여 다음 조건을 만족시킴\[f \left( \frac{ a\tau +b}{ c\tau + d} \right) = (c\tau +d)^{2k} f(\tau)\]
     

 

 

푸리에 전개

  • cusp에서도 해석함수의 성질을 갖도록 해주기 위한 조건\[f(\tau) = \sum_{n=0}^\infty a_n e^{2i\pi n\tau}\]

 

 

중요한 예

\[\Delta(\tau)=q\prod_{n>0}(1-q^n)^{24}=q-24q+252q^2+\cdots\]


 

구조 정리

(정리)

\(\mathbb{C}[E_4,E_6]=\oplus M_k\)

\(\{E_6^2, \Delta\}\)는 weight 12인 모듈라 형식의 기저가 된다.

 

 

메모

\[d(\frac{az+b}{cz+d})=\frac{(acz+ad-acz-bc)}{(cz+d)^2}dz=(cz+d)^{-2}dz\]

 

역사

 

 

관련된 항목들

 


수학용어번역

  • modular - 대한수학회 수학용어집


 

사전 형태의 자료

 

리뷰논문, 에세이, 강의노트