"대칭곱 (symmetric power)과 대칭텐서"의 두 판 사이의 차이
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
9번째 줄: | 9번째 줄: | ||
===$\dim V=2$인 경우=== | ===$\dim V=2$인 경우=== | ||
− | + | $$ | |
− | + | \begin{array}{c|c} | |
− | + | n & \operatorname{Sym}^nA \\ | |
− | + | \hline | |
− | + | 0 & \left( | |
− | + | \begin{array}{c} | |
− | + | 1 \\ | |
− | + | \end{array} | |
− | + | \right) \\ | |
− | + | 1 & \left( | |
− | + | \begin{array}{cc} | |
+ | a(1,1) & a(1,2) \\ | ||
+ | a(2,1) & a(2,2) \\ | ||
+ | \end{array} | ||
+ | \right) \\ | ||
+ | 2 & \left( | ||
+ | \begin{array}{ccc} | ||
+ | a(1,1)^2 & a(1,1) a(1,2) & a(1,2)^2 \\ | ||
+ | 2 a(1,1) a(2,1) & a(1,2) a(2,1)+a(1,1) a(2,2) & 2 a(1,2) a(2,2) \\ | ||
+ | a(2,1)^2 & a(2,1) a(2,2) & a(2,2)^2 \\ | ||
+ | \end{array} | ||
+ | \right) \\ | ||
+ | 3 & \left( | ||
+ | \begin{array}{cccc} | ||
+ | a(1,1)^3 & a(1,1)^2 a(1,2) & a(1,1) a(1,2)^2 & a(1,2)^3 \\ | ||
+ | 3 a(1,1)^2 a(2,1) & a(2,2) a(1,1)^2+2 a(1,2) a(2,1) a(1,1) & a(2,1) a(1,2)^2+2 a(1,1) a(2,2) a(1,2) & 3 a(1,2)^2 a(2,2) \\ | ||
+ | 3 a(1,1) a(2,1)^2 & a(1,2) a(2,1)^2+2 a(1,1) a(2,2) a(2,1) & a(1,1) a(2,2)^2+2 a(1,2) a(2,1) a(2,2) & 3 a(1,2) a(2,2)^2 \\ | ||
+ | a(2,1)^3 & a(2,1)^2 a(2,2) & a(2,1) a(2,2)^2 & a(2,2)^3 \\ | ||
+ | \end{array} | ||
+ | \right) \\ | ||
+ | 4 & \left( | ||
+ | \begin{array}{ccccc} | ||
+ | a(1,1)^4 & a(1,1)^3 a(1,2) & a(1,1)^2 a(1,2)^2 & a(1,1) a(1,2)^3 & a(1,2)^4 \\ | ||
+ | 4 a(1,1)^3 a(2,1) & a(2,2) a(1,1)^3+3 a(1,2) a(2,1) a(1,1)^2 & 2 a(1,2) a(2,2) a(1,1)^2+2 a(1,2)^2 a(2,1) a(1,1) & a(2,1) a(1,2)^3+3 a(1,1) a(2,2) a(1,2)^2 & 4 a(1,2)^3 a(2,2) \\ | ||
+ | 6 a(1,1)^2 a(2,1)^2 & 3 a(2,1) a(2,2) a(1,1)^2+3 a(1,2) a(2,1)^2 a(1,1) & a(1,2)^2 a(2,1)^2+4 a(1,1) a(1,2) a(2,2) a(2,1)+a(1,1)^2 a(2,2)^2 & 3 a(2,1) a(2,2) a(1,2)^2+3 a(1,1) a(2,2)^2 a(1,2) & 6 a(1,2)^2 a(2,2)^2 \\ | ||
+ | 4 a(1,1) a(2,1)^3 & a(1,2) a(2,1)^3+3 a(1,1) a(2,2) a(2,1)^2 & 2 a(1,2) a(2,2) a(2,1)^2+2 a(1,1) a(2,2)^2 a(2,1) & a(1,1) a(2,2)^3+3 a(1,2) a(2,1) a(2,2)^2 & 4 a(1,2) a(2,2)^3 \\ | ||
+ | a(2,1)^4 & a(2,1)^3 a(2,2) & a(2,1)^2 a(2,2)^2 & a(2,1) a(2,2)^3 & a(2,2)^4 \\ | ||
+ | \end{array} | ||
+ | \right) \\ | ||
+ | \end{array} | ||
+ | $$ | ||
==관련된 항목들== | ==관련된 항목들== |
2015년 5월 6일 (수) 20:10 판
개요
- 벡터공간 $V$에 대하여 대칭곱 $\operatorname{Sym}^n V$를 정의할 수 있다
- $V$에 작용하는 선형변환 $A$에 대하여 $\operatorname{Sym}^n A$를 정의할 수 있다
행렬의 대칭곱
- $V$에 작용하는 선형변환 $A$를 생각하자
$\dim V=2$인 경우
$$ \begin{array}{c|c} n & \operatorname{Sym}^nA \\ \hline 0 & \left( \begin{array}{c} 1 \\ \end{array} \right) \\ 1 & \left( \begin{array}{cc} a(1,1) & a(1,2) \\ a(2,1) & a(2,2) \\ \end{array} \right) \\ 2 & \left( \begin{array}{ccc} a(1,1)^2 & a(1,1) a(1,2) & a(1,2)^2 \\ 2 a(1,1) a(2,1) & a(1,2) a(2,1)+a(1,1) a(2,2) & 2 a(1,2) a(2,2) \\ a(2,1)^2 & a(2,1) a(2,2) & a(2,2)^2 \\ \end{array} \right) \\ 3 & \left( \begin{array}{cccc} a(1,1)^3 & a(1,1)^2 a(1,2) & a(1,1) a(1,2)^2 & a(1,2)^3 \\ 3 a(1,1)^2 a(2,1) & a(2,2) a(1,1)^2+2 a(1,2) a(2,1) a(1,1) & a(2,1) a(1,2)^2+2 a(1,1) a(2,2) a(1,2) & 3 a(1,2)^2 a(2,2) \\ 3 a(1,1) a(2,1)^2 & a(1,2) a(2,1)^2+2 a(1,1) a(2,2) a(2,1) & a(1,1) a(2,2)^2+2 a(1,2) a(2,1) a(2,2) & 3 a(1,2) a(2,2)^2 \\ a(2,1)^3 & a(2,1)^2 a(2,2) & a(2,1) a(2,2)^2 & a(2,2)^3 \\ \end{array} \right) \\ 4 & \left( \begin{array}{ccccc} a(1,1)^4 & a(1,1)^3 a(1,2) & a(1,1)^2 a(1,2)^2 & a(1,1) a(1,2)^3 & a(1,2)^4 \\ 4 a(1,1)^3 a(2,1) & a(2,2) a(1,1)^3+3 a(1,2) a(2,1) a(1,1)^2 & 2 a(1,2) a(2,2) a(1,1)^2+2 a(1,2)^2 a(2,1) a(1,1) & a(2,1) a(1,2)^3+3 a(1,1) a(2,2) a(1,2)^2 & 4 a(1,2)^3 a(2,2) \\ 6 a(1,1)^2 a(2,1)^2 & 3 a(2,1) a(2,2) a(1,1)^2+3 a(1,2) a(2,1)^2 a(1,1) & a(1,2)^2 a(2,1)^2+4 a(1,1) a(1,2) a(2,2) a(2,1)+a(1,1)^2 a(2,2)^2 & 3 a(2,1) a(2,2) a(1,2)^2+3 a(1,1) a(2,2)^2 a(1,2) & 6 a(1,2)^2 a(2,2)^2 \\ 4 a(1,1) a(2,1)^3 & a(1,2) a(2,1)^3+3 a(1,1) a(2,2) a(2,1)^2 & 2 a(1,2) a(2,2) a(2,1)^2+2 a(1,1) a(2,2)^2 a(2,1) & a(1,1) a(2,2)^3+3 a(1,2) a(2,1) a(2,2)^2 & 4 a(1,2) a(2,2)^3 \\ a(2,1)^4 & a(2,1)^3 a(2,2) & a(2,1)^2 a(2,2)^2 & a(2,1) a(2,2)^3 & a(2,2)^4 \\ \end{array} \right) \\ \end{array} $$
관련된 항목들
- 중복조합의 공식 H(n,r)=C(n+r-1,r)
- 외대수(exterior algebra)와 다중선형대수(multilinear algebra)
- 행렬의 크로네커 곱 (Kronecker product)
사전 형태의 자료
- http://en.wikipedia.org/wiki/Symmetric_algebra#Distinction_with_symmetric_tensors
- http://en.wikipedia.org/wiki/Symmetric_tensor
리뷰, 에세이, 강의노트