"콕세터 군에서의 축약 표현"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
8번째 줄: 8번째 줄:
 
* Denoncourt, Hugh. “Some Combinatorial Models for Reduced Expressions in Coxeter Groups.” arXiv:1104.3533 [math], April 18, 2011. http://arxiv.org/abs/1104.3533.
 
* Denoncourt, Hugh. “Some Combinatorial Models for Reduced Expressions in Coxeter Groups.” arXiv:1104.3533 [math], April 18, 2011. http://arxiv.org/abs/1104.3533.
 
* Stembridge, John. “Some Combinatorial Aspects of Reduced Words in Finite Coxeter Groups.” Transactions of the American Mathematical Society 349, no. 4 (1997): 1285–1332. doi:10.1090/S0002-9947-97-01805-9.
 
* Stembridge, John. “Some Combinatorial Aspects of Reduced Words in Finite Coxeter Groups.” Transactions of the American Mathematical Society 349, no. 4 (1997): 1285–1332. doi:10.1090/S0002-9947-97-01805-9.
 +
* Winkel, Rudolf. “Schubert Functions and the Number of Reduced Words of Permutations.” Séminaire Lotharingien de Combinatoire [electronic Only] 39 (1997). https://eudml.org/doc/119309.
 +
* Eriksson, Kimmo. “Reduced Words in Affine Coxeter Groups.” Discrete Mathematics 157, no. 1–3 (October 1, 1996): 127–46. doi:10.1016/S0012-365X(96)83011-1.
 +
* Winkel, Rudolf. "A combinatorial bijection between standard Young tableaux and reduced words of Grassmannian permutations." Seminaire Lotharingien et Combinatoire, B36h (1996).
 
* Brink, Brigitte, and Robert B. Howlett. “A Finiteness Property an an Automatic Structure for Coxeter Groups.” Mathematische Annalen 296, no. 1 (December 1993): 179–90. doi:10.1007/BF01445101.
 
* Brink, Brigitte, and Robert B. Howlett. “A Finiteness Property an an Automatic Structure for Coxeter Groups.” Mathematische Annalen 296, no. 1 (December 1993): 179–90. doi:10.1007/BF01445101.
 +
* Stanley, Richard P. “On the Number of Reduced Decompositions of Elements of Coxeter Groups.” European Journal of Combinatorics 5, no. 4 (December 1984): 359–72. doi:10.1016/S0195-6698(84)80039-6.

2015년 8월 9일 (일) 23:13 판

매스매티카 파일 및 계산 리소스


관련논문

  • Shi, Jian-yi. "The reduced expressions in a Coxeter system with a strictly complete Coxeter graph." Advances in Mathematics 272 (2015): 579-597.
  • Denoncourt, Hugh. “Some Combinatorial Models for Reduced Expressions in Coxeter Groups.” arXiv:1104.3533 [math], April 18, 2011. http://arxiv.org/abs/1104.3533.
  • Stembridge, John. “Some Combinatorial Aspects of Reduced Words in Finite Coxeter Groups.” Transactions of the American Mathematical Society 349, no. 4 (1997): 1285–1332. doi:10.1090/S0002-9947-97-01805-9.
  • Winkel, Rudolf. “Schubert Functions and the Number of Reduced Words of Permutations.” Séminaire Lotharingien de Combinatoire [electronic Only] 39 (1997). https://eudml.org/doc/119309.
  • Eriksson, Kimmo. “Reduced Words in Affine Coxeter Groups.” Discrete Mathematics 157, no. 1–3 (October 1, 1996): 127–46. doi:10.1016/S0012-365X(96)83011-1.
  • Winkel, Rudolf. "A combinatorial bijection between standard Young tableaux and reduced words of Grassmannian permutations." Seminaire Lotharingien et Combinatoire, B36h (1996).
  • Brink, Brigitte, and Robert B. Howlett. “A Finiteness Property an an Automatic Structure for Coxeter Groups.” Mathematische Annalen 296, no. 1 (December 1993): 179–90. doi:10.1007/BF01445101.
  • Stanley, Richard P. “On the Number of Reduced Decompositions of Elements of Coxeter Groups.” European Journal of Combinatorics 5, no. 4 (December 1984): 359–72. doi:10.1016/S0195-6698(84)80039-6.