"Q-팩토리얼"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
4번째 줄: | 4번째 줄: | ||
==개요== | ==개요== | ||
− | * 팩토리얼의 q-analogue:<math>[n]_q!= [1]_q [2]_q \cdots [n-1]_q [n]_q=\frac{1-q}{1-q} \frac{1-q^2}{1-q} \cdots \frac{1-q^{n-1}}{1-q} \frac{1-q^n}{1-q} =\frac{(q;q)_n}{(1-q)^n}=\frac{(1-q)_q^n}{(1-q)^n}</math | + | * 팩토리얼의 q-analogue:<math>[n]_q!= [1]_q [2]_q \cdots [n-1]_q [n]_q=\frac{1-q}{1-q} \frac{1-q^2}{1-q} \cdots \frac{1-q^{n-1}}{1-q} \frac{1-q^n}{1-q} =\frac{(q;q)_n}{(1-q)^n}=\frac{(1-q)_q^n}{(1-q)^n}</math>[[Pochhammer 기호와 캐츠(Kac) 기호]] 참조 |
− | * 극한 <math>q \to 1</math>:<math>(1+q)\cdots (1+q+\cdots + q^{n-2}) (1+q+\cdots + q^{n-1}) \to n!</math | + | * 극한 <math>q \to 1</math>:<math>(1+q)\cdots (1+q+\cdots + q^{n-2}) (1+q+\cdots + q^{n-1}) \to n!</math> |
44번째 줄: | 44번째 줄: | ||
* http://www.google.com/dictionary?langpair=en|ko&q= | * http://www.google.com/dictionary?langpair=en|ko&q= | ||
− | * [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집] | + | * [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집] |
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr= | ** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr= | ||
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판] | * [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판] | ||
58번째 줄: | 58번째 줄: | ||
* http://www.wolframalpha.com/input/?i= | * http://www.wolframalpha.com/input/?i= | ||
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions] | * [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions] | ||
− | * [http://www.research.att.com/~njas/sequences/index.html The On-Line Encyclopedia of Integer Sequences] | + | * [http://www.research.att.com/~njas/sequences/index.html The On-Line Encyclopedia of Integer Sequences] |
** http://www.research.att.com/~njas/sequences/?q= | ** http://www.research.att.com/~njas/sequences/?q= | ||
2020년 11월 13일 (금) 20:40 판
개요
- 팩토리얼의 q-analogue\[[n]_q!= [1]_q [2]_q \cdots [n-1]_q [n]_q=\frac{1-q}{1-q} \frac{1-q^2}{1-q} \cdots \frac{1-q^{n-1}}{1-q} \frac{1-q^n}{1-q} =\frac{(q;q)_n}{(1-q)^n}=\frac{(1-q)_q^n}{(1-q)^n}\]Pochhammer 기호와 캐츠(Kac) 기호 참조
- 극한 \(q \to 1\)\[(1+q)\cdots (1+q+\cdots + q^{n-2}) (1+q+\cdots + q^{n-1}) \to n!\]
재미있는 사실
역사
메모
관련된 항목들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문