"RSOS models"의 두 판 사이의 차이
imported>Pythagoras0 |
imported>Pythagoras0 |
||
9번째 줄: | 9번째 줄: | ||
− | |||
− | |||
− | |||
==physical description== | ==physical description== | ||
18번째 줄: | 15번째 줄: | ||
* neighboring points cannot have heights which differ much from each other | * neighboring points cannot have heights which differ much from each other | ||
* local energy density is given by the surface energy | * local energy density is given by the surface energy | ||
− | |||
− | |||
− | |||
27번째 줄: | 21번째 줄: | ||
* to each site i, we assign a height variable | * to each site i, we assign a height variable | ||
− | |||
− | |||
− | |||
37번째 줄: | 28번째 줄: | ||
− | |||
− | |||
− | |||
==critical RSOS model== | ==critical RSOS model== | ||
48번째 줄: | 36번째 줄: | ||
− | |||
− | |||
− | |||
Pierre Mathieu, [http://ipht.cea.fr/statcomb2009/dimers/slides/mathieu.pdf Combinatorics of RSOS paths] | Pierre Mathieu, [http://ipht.cea.fr/statcomb2009/dimers/slides/mathieu.pdf Combinatorics of RSOS paths] | ||
Every minimal model in conformal field theory can be viewed as the scaling limit of a restricted-solid-on-solid (RSOS) model at criticality. States in irreducible modules of the minimal model M(p',p) can be described combinatorially by paths that represent configurations in the corresponding RSOS model, dubbed RSOS(p',p). These paths are in one-to-one correspondence with tableaux with prescribed hook differences. For p'=2, these are tableaux with successive ranks in a prescribed interval, which are known to be related to the Bressoud paths (whose generating function is the sum side of the Andrews-Gordon identity). We show how the RSOS(2,p) paths can be directly related to these paths. Generalizing this construction, we arrive at a representation of RSOS paths in terms of generalized Bressoud paths (for p>2p'). These new paths have a simple weighting and a natural particle interpretation. This then entails a natural particle spectrum for RSOS paths, which can be interpreted in terms of the kinks and breathers of the restricted sine-Gordon model. | Every minimal model in conformal field theory can be viewed as the scaling limit of a restricted-solid-on-solid (RSOS) model at criticality. States in irreducible modules of the minimal model M(p',p) can be described combinatorially by paths that represent configurations in the corresponding RSOS model, dubbed RSOS(p',p). These paths are in one-to-one correspondence with tableaux with prescribed hook differences. For p'=2, these are tableaux with successive ranks in a prescribed interval, which are known to be related to the Bressoud paths (whose generating function is the sum side of the Andrews-Gordon identity). We show how the RSOS(2,p) paths can be directly related to these paths. Generalizing this construction, we arrive at a representation of RSOS paths in terms of generalized Bressoud paths (for p>2p'). These new paths have a simple weighting and a natural particle interpretation. This then entails a natural particle spectrum for RSOS paths, which can be interpreted in terms of the kinks and breathers of the restricted sine-Gordon model. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
71번째 줄: | 46번째 줄: | ||
* http://www.google.com/search?hl=en&tbs=tl:1&q= | * http://www.google.com/search?hl=en&tbs=tl:1&q= | ||
− | |||
− | |||
==related items== | ==related items== | ||
− | + | * [[5 conformal field theory(CFT)]] | |
− | * [[5 conformal field theory(CFT) | ||
* [[minimal models]] | * [[minimal models]] | ||
* [[six-vertex model and Quantum XXZ Hamiltonian]] | * [[six-vertex model and Quantum XXZ Hamiltonian]] | ||
− | + | * [[Bethe ansatz for RSOS models]] | |
− | |||
==articles== | ==articles== | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
* [http://dx.doi.org/10.1088/1751-8113/42/12/122001 Particles in RSOS paths] | * [http://dx.doi.org/10.1088/1751-8113/42/12/122001 Particles in RSOS paths] | ||
** P Jacob and P Mathieu, 2009 | ** P Jacob and P Mathieu, 2009 | ||
196번째 줄: | 66번째 줄: | ||
** 1998 | ** 1998 | ||
* Pearce, Paul A., and Bernard Nienhuis. 1998. “Scaling Limit of RSOS Lattice Models and TBA Equations.” Nuclear Physics B 519 (3) (May 25): 579–596. doi:10.1016/S0550-3213(98)00134-5. | * Pearce, Paul A., and Bernard Nienhuis. 1998. “Scaling Limit of RSOS Lattice Models and TBA Equations.” Nuclear Physics B 519 (3) (May 25): 579–596. doi:10.1016/S0550-3213(98)00134-5. | ||
− | * | + | * Zhou, Yu-Kui. 1995. “Further Solutions of Critical ABF RSOS Models.” Journal of Physics A: Mathematical and General 28 (15) (August 7): 4339. doi:10.1088/0305-4470/28/15/014. |
− | * | + | * Wu, F. Y. 1992. “Knot Theory and Statistical Mechanics.” Reviews of Modern Physics 64 (4) (October 1): 1099–1131. doi:10.1103/RevModPhys.64.1099. |
− | |||
− | |||
* Klümper, Andreas, and Paul A. Pearce. 1992. “Conformal Weights of RSOS Lattice Models and Their Fusion Hierarchies.” Physica A: Statistical Mechanics and Its Applications 183 (3) (May 1): 304–350. doi:10.1016/0378-4371(92)90149-K. | * Klümper, Andreas, and Paul A. Pearce. 1992. “Conformal Weights of RSOS Lattice Models and Their Fusion Hierarchies.” Physica A: Statistical Mechanics and Its Applications 183 (3) (May 1): 304–350. doi:10.1016/0378-4371(92)90149-K. | ||
− | * | + | * Bazhanov, V. V., and N. Reshetikhin. 1990. “Restricted Solid-on-solid Models Connected with Simply Laced Algebras and Conformal Field Theory.” Journal of Physics A: Mathematical and General 23 (9) (May 7): 1477. doi:[http://dx.doi.org/10.1088/0305-4470/23/9/012 10.1088/0305-4470/23/9/012]. |
− | + | * Bazhanov, V. V., and N. Yu. Reshetikhin. 1989. “Critical RSOS Models and Conformal Field Theory.” International Journal of Modern Physics A. Particles and Fields. Gravitation. Cosmology. Nuclear Physics 4 (1): 115–142. doi:[http://dx.doi.org/10.1142/S0217751X89000042 10.1142/S0217751X89000042]. | |
− | + | * E. Date, M. Jimbo, A. Kuniba, T. Miwa and M. Okado [http://www.sciencedirect.com/science?_ob=MiamiImageURL&_imagekey=B6TVC-4719S7Y-26T-3&_cdi=5531&_user=4420&_check=y&_orig=search&_coverDate=12%2F31%2F1987&view=c&wchp=dGLbVlW-zSkWz&md5=bbff7c5b006ff5e8c44c75ac96bbb527&ie=/sdarticle.pdf Exactly solvable SOS models. Local height probabilities and theta function identities], <em style="line-height: 2em;">Nucl. Phys. B</em> '''290''' (1987), p. 231. | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | * | ||
− | |||
− | * | ||
− | |||
− | |||
* Huse, David A. 1984. “Exact Exponents for Infinitely Many New Multicritical Points.” Physical Review B 30 (7) (October 1): 3908–3915. doi:10.1103/PhysRevB.30.3908. | * Huse, David A. 1984. “Exact Exponents for Infinitely Many New Multicritical Points.” Physical Review B 30 (7) (October 1): 3908–3915. doi:10.1103/PhysRevB.30.3908. | ||
− | * George E. | + | * Andrews, George E., R. J. Baxter, and P. J. Forrester. 1984. “Eight-vertex SOS Model and Generalized Rogers-Ramanujan-type Identities.” Journal of Statistical Physics 35 (3-4) (May 1): 193–266. doi:10.1007/BF01014383. http://www.springerlink.com/content/r522x4086p54u438/ |
[[분류:개인노트]] | [[분류:개인노트]] | ||
[[분류:integrable systems]] | [[분류:integrable systems]] | ||
[[분류:math and physics]] | [[분류:math and physics]] |
2013년 6월 28일 (금) 07:17 판
introduction
- restricted solid-on-solid (RSOS) models
- also called as ABF(Andrews-Baxter-Forrester models)
- class of a spin system
- IBF(interaction round a face) model
- vertex counterpart is Belavin's generalization of the 8-vertex model
physical description
- a rough, discrete analogon of a gently fluctutationg surface of a liquid
- neighboring points cannot have heights which differ much from each other
- local energy density is given by the surface energy
height variable
- to each site i, we assign a height variable
Boltzmann weight
critical RSOS model
- A_3 RSOS model = Ising models
- D_4 RSOS model = 3-states Potts model
Pierre Mathieu, Combinatorics of RSOS paths
Every minimal model in conformal field theory can be viewed as the scaling limit of a restricted-solid-on-solid (RSOS) model at criticality. States in irreducible modules of the minimal model M(p',p) can be described combinatorially by paths that represent configurations in the corresponding RSOS model, dubbed RSOS(p',p). These paths are in one-to-one correspondence with tableaux with prescribed hook differences. For p'=2, these are tableaux with successive ranks in a prescribed interval, which are known to be related to the Bressoud paths (whose generating function is the sum side of the Andrews-Gordon identity). We show how the RSOS(2,p) paths can be directly related to these paths. Generalizing this construction, we arrive at a representation of RSOS paths in terms of generalized Bressoud paths (for p>2p'). These new paths have a simple weighting and a natural particle interpretation. This then entails a natural particle spectrum for RSOS paths, which can be interpreted in terms of the kinks and breathers of the restricted sine-Gordon model.
history
- 5 conformal field theory(CFT)
- minimal models
- six-vertex model and Quantum XXZ Hamiltonian
- Bethe ansatz for RSOS models
articles
- Particles in RSOS paths
- P Jacob and P Mathieu, 2009
- Paths and partitions: Combinatorial descriptions of the parafermionic states
- Pierre Mathieu, J. Math. Phys. 50, 095210 (2009)
- An Elliptic Algebra Uq,p([^(sl2))Uq,p(sl2︿) and the Fusion RSOS Model]
- 1998
- Pearce, Paul A., and Bernard Nienhuis. 1998. “Scaling Limit of RSOS Lattice Models and TBA Equations.” Nuclear Physics B 519 (3) (May 25): 579–596. doi:10.1016/S0550-3213(98)00134-5.
- Zhou, Yu-Kui. 1995. “Further Solutions of Critical ABF RSOS Models.” Journal of Physics A: Mathematical and General 28 (15) (August 7): 4339. doi:10.1088/0305-4470/28/15/014.
- Wu, F. Y. 1992. “Knot Theory and Statistical Mechanics.” Reviews of Modern Physics 64 (4) (October 1): 1099–1131. doi:10.1103/RevModPhys.64.1099.
- Klümper, Andreas, and Paul A. Pearce. 1992. “Conformal Weights of RSOS Lattice Models and Their Fusion Hierarchies.” Physica A: Statistical Mechanics and Its Applications 183 (3) (May 1): 304–350. doi:10.1016/0378-4371(92)90149-K.
- Bazhanov, V. V., and N. Reshetikhin. 1990. “Restricted Solid-on-solid Models Connected with Simply Laced Algebras and Conformal Field Theory.” Journal of Physics A: Mathematical and General 23 (9) (May 7): 1477. doi:10.1088/0305-4470/23/9/012.
- Bazhanov, V. V., and N. Yu. Reshetikhin. 1989. “Critical RSOS Models and Conformal Field Theory.” International Journal of Modern Physics A. Particles and Fields. Gravitation. Cosmology. Nuclear Physics 4 (1): 115–142. doi:10.1142/S0217751X89000042.
- E. Date, M. Jimbo, A. Kuniba, T. Miwa and M. Okado Exactly solvable SOS models. Local height probabilities and theta function identities, Nucl. Phys. B 290 (1987), p. 231.
- Huse, David A. 1984. “Exact Exponents for Infinitely Many New Multicritical Points.” Physical Review B 30 (7) (October 1): 3908–3915. doi:10.1103/PhysRevB.30.3908.
- Andrews, George E., R. J. Baxter, and P. J. Forrester. 1984. “Eight-vertex SOS Model and Generalized Rogers-Ramanujan-type Identities.” Journal of Statistical Physics 35 (3-4) (May 1): 193–266. doi:10.1007/BF01014383. http://www.springerlink.com/content/r522x4086p54u438/