"RSOS models"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
1번째 줄: 1번째 줄:
==introduction==
 
  
* restricted solid-on-solid (RSOS) models
 
* also called as ABF(Andrews-Baxter-Forrester models)
 
* class of a spin system
 
* IBF(interaction round a face) model
 
* vertex counterpart is Belavin's generalization of the 8-vertex model
 
 
 
 
 
==physical description==
 
 
*  a rough, discrete analogon of a gently fluctutationg surface of a liquid
 
*  neighboring points cannot have heights which differ much from each other
 
*  local energy density is given by the surface energy
 
 
 
==height variable==
 
 
*  to each site i, we assign a height variable
 
 
 
 
 
==Boltzmann weight==
 
 
 
 
 
==critical RSOS model==
 
 
*  A_3 RSOS model = [[Ising models]]
 
*  D_4 RSOS model = [[3-states Potts model]]
 
 
 
 
 
Pierre Mathieu, [http://ipht.cea.fr/statcomb2009/dimers/slides/mathieu.pdf Combinatorics of RSOS paths]
 
 
Every minimal model in conformal field theory can be viewed as the scaling limit of a restricted-solid-on-solid (RSOS) model at criticality. States in irreducible modules of the minimal model M(p',p) can be described combinatorially by paths that represent configurations in the corresponding RSOS model, dubbed RSOS(p',p). These paths are in one-to-one correspondence with tableaux with prescribed hook differences. For p'=2, these are tableaux with successive ranks in a prescribed interval, which are known to be related to the Bressoud paths (whose generating function is the sum side of the Andrews-Gordon identity). We show how the RSOS(2,p) paths can be directly related to these paths. Generalizing this construction, we arrive at a representation of RSOS paths in terms of generalized Bressoud paths (for p>2p'). These new paths have a simple weighting and a natural particle interpretation. This then entails a natural particle spectrum for RSOS paths, which can be interpreted in terms of the kinks and breathers of the restricted sine-Gordon model.
 
 
 
 
==history==
 
* The relevant Bethe ansatz analysis on RSOS models
 
** Bazhanov-Reshetikhin JPA 23, 1477 (1992) for ADE
 
** Kuniba Nucl. Phys B (1993) for BCFG.
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
 
 
==memo==
 
* [http://ci.nii.ac.jp/naid/110006454021/en MINIMAL MODELS IN CONFORMAL FIELD THEORY AND INTEGRABLE LATTICE MODELS]<br>
 
** Nakanishi Tomoki, Institute of Physics University of Tokyo, 1990
 
 
 
==related items==
 
* [[Conformal field theory (CFT)]]
 
* [[minimal models]]
 
* [[six-vertex model and Quantum XXZ Hamiltonian]]
 
* [[Eight-vertex model and quantum XYZ model]]
 
* [[Bethe ansatz for RSOS models]]
 
* [[Z k parafermion theory]]
 
* [[Solid-on-solid model]]
 
 
==articles==
 
* Jeffrey Kelling, Géza Ódor, Sibylle Gemming, Universality of 2+1 dimensional RSOS models, arXiv:1605.02620 [cond-mat.stat-mech], May 09 2016, http://arxiv.org/abs/1605.02620
 
* Deeb, Omar El. “On the Critical Boundary RSOS \mathcal{M}(3,5) Model.” arXiv:1512.02185 [hep-Th], December 7, 2015. http://arxiv.org/abs/1512.02185.
 
* Bianchini, Davide, and Francesco Ravanini. “Entanglement Entropy from Corner Transfer Matrix in Forrester Baxter Non-Unitary RSOS Models.” arXiv:1509.04601 [cond-Mat, Physics:hep-Th, Physics:math-Ph], September 15, 2015. http://arxiv.org/abs/1509.04601.
 
* Bianchini, Davide, Elisa Ercolessi, Paul A. Pearce, and Francesco Ravanini. ‘RSOS Quantum Chains Associated with Off-Critical Minimal Models and $\mathbb{Z}_n$ Parafermions’. arXiv:1412.4942 [cond-Mat, Physics:hep-Th, Physics:math-Ph], 16 December 2014. http://arxiv.org/abs/1412.4942.
 
* Jacob, P., and P. Mathieu. “Particles in RSOS Paths.” Journal of Physics A: Mathematical and Theoretical 42, no. 12 (March 27, 2009): 122001. doi:[http://dx.doi.org/10.1088/1751-8113/42/12/122001 10.1088/1751-8113/42/12/122001].
 
* Mathieu, Pierre. “Paths and Partitions: Combinatorial Descriptions of the Parafermionic States.” Journal of Mathematical Physics 50, no. 9 (September 1, 2009): 095210. doi:[http://dx.doi.org/10.1063/1.3157921 10.1063/1.3157921].
 
* Konno, Hitoshi. “An Elliptic Algebra and the Fusion RSOS Model.” Communications in Mathematical Physics 195, no. 2 (July 1, 1998): 373–403. doi:[http://www.springerlink.com/content/a38dkrj20anfxl2n/ 10.1007/s002200050394].
 
* Pearce, Paul A., and Bernard Nienhuis. 1998. “Scaling Limit of RSOS Lattice Models and TBA Equations.” Nuclear Physics B 519 (3) (May 25): 579–596. doi:10.1016/S0550-3213(98)00134-5.
 
* Gepner, Doron. “Lattice Models and Generalized Rogers Ramanujan Identities.” Physics Letters B 348, no. 3–4 (April 1995): 377–85. doi:10.1016/0370-2693(95)00173-I.
 
* Zhou, Yu-Kui. 1995. “Further Solutions of Critical ABF RSOS Models.” Journal of Physics A: Mathematical and General 28 (15) (August 7): 4339. doi:10.1088/0305-4470/28/15/014.
 
* Wu, F. Y. 1992. “Knot Theory and Statistical Mechanics.” Reviews of Modern Physics 64 (4) (October 1): 1099–1131. doi:10.1103/RevModPhys.64.1099.
 
* Klümper, Andreas, and Paul A. Pearce. 1992. “Conformal Weights of RSOS Lattice Models and Their Fusion Hierarchies.” Physica A: Statistical Mechanics and Its Applications 183 (3) (May 1): 304–350. doi:10.1016/0378-4371(92)90149-K.
 
* Kuniba, Atsuo, and Tomoki Nakanishi. 1992. “Fusion Rsos Models and Rational Coset Models.” In Quantum Groups, edited by Petr P. Kulish, 303–311. Lecture Notes in Mathematics 1510. Springer Berlin Heidelberg. http://link.springer.com/chapter/10.1007/BFb0101196.
 
* Bazhanov, V. V., and N. Reshetikhin. 1990. “Restricted Solid-on-solid Models Connected with Simply Laced Algebras and Conformal Field Theory.” Journal of Physics A: Mathematical and General 23 (9) (May 7): 1477. doi:[http://dx.doi.org/10.1088/0305-4470/23/9/012 10.1088/0305-4470/23/9/012].
 
* Bazhanov, V. V., and N. Yu. Reshetikhin. 1989. “Critical RSOS Models and Conformal Field Theory.” International Journal of Modern Physics A. Particles and Fields. Gravitation. Cosmology. Nuclear Physics 4 (1): 115–142. doi:[http://dx.doi.org/10.1142/S0217751X89000042 10.1142/S0217751X89000042].
 
* E. Date, M. Jimbo, A. Kuniba, T. Miwa and M. Okado [http://www.sciencedirect.com/science?_ob=MiamiImageURL&_imagekey=B6TVC-4719S7Y-26T-3&_cdi=5531&_user=4420&_check=y&_orig=search&_coverDate=12%2F31%2F1987&view=c&wchp=dGLbVlW-zSkWz&md5=bbff7c5b006ff5e8c44c75ac96bbb527&ie=/sdarticle.pdf Exactly solvable SOS models. Local height probabilities and theta function identities], <em style="line-height: 2em;">Nucl. Phys. B</em> '''290''' (1987), p. 231.
 
* Huse, David A. 1984. “Exact Exponents for Infinitely Many New Multicritical Points.” Physical Review B 30 (7) (October 1): 3908–3915. doi:10.1103/PhysRevB.30.3908.
 
* Andrews, George E., R. J. Baxter, and P. J. Forrester. 1984. “Eight-vertex SOS Model and Generalized Rogers-Ramanujan-type Identities.” Journal of Statistical Physics 35 (3-4) (May 1): 193–266. doi:10.1007/BF01014383. http://www.springerlink.com/content/r522x4086p54u438/
 
 
[[분류:개인노트]]
 
[[분류:integrable systems]]
 
[[분류:math and physics]]
 
[[분류:migrate]]
 

2020년 11월 12일 (목) 03:50 판