"가우스-요르단 소거법"의 두 판 사이의 차이
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로) |
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로) |
||
1번째 줄: | 1번째 줄: | ||
− | ==이 항목의 수학노트 원문주소 | + | ==이 항목의 수학노트 원문주소== |
* [[가우스-조단 소거법]] | * [[가우스-조단 소거법]] | ||
7번째 줄: | 7번째 줄: | ||
− | ==개요 | + | ==개요== |
* 선형대수학의 중요한 알고리즘의 하나 | * 선형대수학의 중요한 알고리즘의 하나 | ||
16번째 줄: | 16번째 줄: | ||
− | ==예 | + | ==예== |
<math>\left( \begin{array}{ccc} 1 & -3 & 0 \\ -1 & 1 & 5 \\ 0 & 1 & 1 \end{array} \right)</math> 에 가우스-조단 소거법을 적용한 경우 | <math>\left( \begin{array}{ccc} 1 & -3 & 0 \\ -1 & 1 & 5 \\ 0 & 1 & 1 \end{array} \right)</math> 에 가우스-조단 소거법을 적용한 경우 | ||
28번째 줄: | 28번째 줄: | ||
− | ==역사 | + | ==역사== |
39번째 줄: | 39번째 줄: | ||
− | ==메모 | + | ==메모== |
* http://math.fullerton.edu/mathews/n2003/GaussianJordanMod.html | * http://math.fullerton.edu/mathews/n2003/GaussianJordanMod.html | ||
48번째 줄: | 48번째 줄: | ||
− | ==관련된 항목들 | + | ==관련된 항목들== |
54번째 줄: | 54번째 줄: | ||
− | ==수학용어번역 | + | ==수학용어번역== |
* 단어사전<br> | * 단어사전<br> | ||
71번째 줄: | 71번째 줄: | ||
− | ==매스매티카 파일 및 계산 리소스 | + | ==매스매티카 파일 및 계산 리소스== |
* https://docs.google.com/file/d/0B8XXo8Tve1cxY2xCTnByU2hWZDg/edit | * https://docs.google.com/file/d/0B8XXo8Tve1cxY2xCTnByU2hWZDg/edit | ||
86번째 줄: | 86번째 줄: | ||
− | ==사전 형태의 자료 | + | ==사전 형태의 자료== |
* [http://ko.wikipedia.org/wiki/%EA%B0%80%EC%9A%B0%EC%8A%A4_%EC%86%8C%EA%B1%B0%EB%B2%95 http://ko.wikipedia.org/wiki/가우스_소거법] | * [http://ko.wikipedia.org/wiki/%EA%B0%80%EC%9A%B0%EC%8A%A4_%EC%86%8C%EA%B1%B0%EB%B2%95 http://ko.wikipedia.org/wiki/가우스_소거법] | ||
98번째 줄: | 98번째 줄: | ||
− | ==리뷰논문, 에세이, 강의노트 | + | ==리뷰논문, 에세이, 강의노트== |
106번째 줄: | 106번째 줄: | ||
− | ==관련논문 | + | ==관련논문== |
* http://www.jstor.org/action/doBasicSearch?Query= | * http://www.jstor.org/action/doBasicSearch?Query= | ||
116번째 줄: | 116번째 줄: | ||
− | ==관련도서 | + | ==관련도서== |
* 도서내검색<br> | * 도서내검색<br> | ||
** http://books.google.com/books?q= | ** http://books.google.com/books?q= | ||
** http://book.daum.net/search/contentSearch.do?query= | ** http://book.daum.net/search/contentSearch.do?query= |
2012년 11월 1일 (목) 10:49 판
이 항목의 수학노트 원문주소
개요
- 선형대수학의 중요한 알고리즘의 하나
- 선형연립방정식의 해법, 역행렬의 계산 등에 활용할 수 있다
예
\(\left( \begin{array}{ccc} 1 & -3 & 0 \\ -1 & 1 & 5 \\ 0 & 1 & 1 \end{array} \right)\) 에 가우스-조단 소거법을 적용한 경우
\(\begin{array}{l} \left( \begin{array}{ccc} 1 & -3 & 0 \\ -1 & 1 & 5 \\ 0 & 1 & 1 \end{array} \right) \\ \left( \begin{array}{ccc} 1 & -3 & 0 \\ 0 & -2 & 5 \\ 0 & 1 & 1 \end{array} \right) \\ \left( \begin{array}{ccc} 1 & -3 & 0 \\ 0 & 1 & -\frac{5}{2} \\ 0 & 1 & 1 \end{array} \right) \\ \left( \begin{array}{ccc} 1 & 0 & -\frac{15}{2} \\ 0 & 1 & -\frac{5}{2} \\ 0 & 1 & 1 \end{array} \right) \\ \left( \begin{array}{ccc} 1 & 0 & -\frac{15}{2} \\ 0 & 1 & -\frac{5}{2} \\ 0 & 0 & \frac{7}{2} \end{array} \right) \\ \left( \begin{array}{ccc} 1 & 0 & -\frac{15}{2} \\ 0 & 1 & -\frac{5}{2} \\ 0 & 0 & 1 \end{array} \right) \\ \left( \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & -\frac{5}{2} \\ 0 & 0 & 1 \end{array} \right) \\ \left( \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right) \end{array}\)
역사
메모
- http://math.fullerton.edu/mathews/n2003/GaussianJordanMod.html
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
수학용어번역
- 단어사전
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 한국통계학회 통계학 용어 온라인 대조표
- 한국물리학회 물리학 용어집 검색기
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
매스매티카 파일 및 계산 리소스
- https://docs.google.com/file/d/0B8XXo8Tve1cxY2xCTnByU2hWZDg/edit
- http://www.wolframalpha.com/input/?i=
- http://functions.wolfram.com/
- NIST Digital Library of Mathematical Functions
- Abramowitz and Stegun Handbook of mathematical functions
- The On-Line Encyclopedia of Integer Sequences
- Numbers, constants and computation
- 매스매티카 파일 목록
사전 형태의 자료
- http://ko.wikipedia.org/wiki/가우스_소거법
- http://en.wikipedia.org/wiki/
- Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
리뷰논문, 에세이, 강의노트
관련논문