"Feynman diagrams and path integral"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지를 개설하였습니다.)
 
1번째 줄: 1번째 줄:
 +
<h5>introduction</h5>
  
 +
 
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
<h5 style="margin: 0px; line-height: 2em;">Finite-dimensional Feynman Diagrams</h5>
 +
 +
[http://www.math.sunysb.edu/%7Etony/whatsnew/column/feynman-1101/feynman1.html http://www.math.sunysb.edu/~tony/whatsnew/column/feynman-1101/feynman1.html]
 +
 +
 
 +
 +
 
 +
 +
== 2. Facts from calculus and their <em style="">d</em>-dimensional analogues ==
 +
 +
 
 +
 +
<br>
 +
 +
The basic fact from calculus that powers the whole discussion is:
 +
 +
 
 +
 +
 
 +
'''Proposition 1'''
 +
 
 +
 +
The identity with  <em style="">a</em> = 1  is proved by the trick of calculating the <em style="">square</em> of the integral in polar coordinates. The general identity follows by change of variable from  <em style="">x</em> to  .
 +
 +
This fact generalizes to higher-dimensional integrals. Set   '''v''' = (<em style="">v</em><sup style="">1</sup>, ..., <em style="">v<sup style="">d</sup></em>) and   <em style="">d</em>'''v''' = (<em style="">dv</em><sup style="">1</sup> ... <em style="">dv<sup style="">d</sup></em>), and let   <em style="">A</em>   be a symmetric   <em style="">d</em> by <em style="">d</em>   matrix.
 +
 +
 
 +
 +
 
 +
'''Proposition 2'''<br>
 +
 
 +
 +
We use the fact that a symmetric matrix <em style="">A</em> is diagonalizable: there exists an orthogonal matrix <em style="">U</em> (so <em style="">U</em><sup style="">t</sup> = <em style="">U</em><sup style="">-1</sup>) such that <em style="">UAU</em><sup style="">-1</sup> is the diagonal matrix <em style="">B</em> whose only nonzero entries are <em style="">b</em><sub style="">11</sub>, ... , <em style="">b<sub style="">dd</sub></em> along the diagonal. Then <em style="">A = U<sup style="">-1</sup>BU</em> and '''v'''<sup style="">t</sup><em style="">A</em>'''v''' = '''v'''<sup style="">t</sup><em style="">U</em><sup style="">-1</sup><em style="">B U</em>'''v''' = '''v'''<sup style="">t</sup><em style="">U</em><sup style="">t</sup><em style="">B U</em>'''v''' = '''w'''<sup style="">t</sup><em style="">B</em>'''w''' where '''w''' = <em style="">U</em>'''v''', using <em style="">U</em><sup style="">t</sup> = <em style="">U</em><sup style="">-1</sup> and (<em style="">U</em>'''v''')<sup style="">t</sup> ='''v'''<sup style="">t</sup><em style="">U</em><sup style="">t</sup>. Since <em style="">U</em> is orthogonal   det<em style="">U</em> = 1   and the change of variable from '''v''' to '''w''' does not change the integral:
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
 
 +
'''Proposition 3'''
 +
 
 +
 +
This follows from Proposition 1 by completion of the square in the exponent and a change of variables.
 +
 +
The generalization to <em style="">d</em> dimensions replaces <em style="">a</em> with <em style="">A</em> as before and <em style="">b</em> with the vector '''b''' = (<em style="">b</em><sup style="">1</sup>, ... , <em style="">b<sup style="">d</sup></em>)
 +
 +
 
 +
 +
 
 +
'''Proposition 4'''
 +
 
 +
 +
This is proven exactly like Proposition 2. If we write this integral as <em style="">Z</em><sub style="">'''b'''</sub> then the integral of Proposition 2 is <em style="">Z</em><sub style="">0</sub> and this proposition can be rewritten as
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
== 3. <em style="">m</em>-point functions ==
 +
 +
 
 +
 +
<br>
 +
 +
For any choice of <em style="">m</em> (not necessarily different) indices <em style="">i</em><sub style="">1</sub>, ... , <em style="">i<sub style="">m</sub></em> between 1 and <em style="">d</em>, define the <em style="">m</em><em style="">-point function</em> as follows:
 +
 +
 
 +
 +
 
 +
 +
The <em style="">m</em>-point functions are a step towards the ultimate aim of our calculation. They enter at this moment because <em style="">they can be calculated by repeated differentiation of</em><em style="">Z</em><sub style="">'''b'''</sub>
 +
 +
For example, note that
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
So the 1-point function <<em style="">v<sup style="">i</sup></em>> is given by
 +
 +
 
 +
 +
 
 +
 +
<br>
 +
 +
Similarly the <em style="">m</em>-point function  is given by
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
== 4. Wick's Theorem ==
 +
 +
<br>
 +
 +
 
 +
 +
Calculating high-order derivatives of a function like  can be very messy. A useful theorem reduces the calculation to combinatorics.
 +
 +
'''Wick's theorem'''
 +
 +
 
 +
 +
where the sum is taken over all pairings  of   <em style="">i</em><sub style="">1</sub>, ..., <em style="">i<sub style="">m</sub></em><br><br> Wick's theorem is proved (a careful counting argument) in texts on quantum field theory. The most detailed explanation is in S. S. Schweber, An Introduction to Relativistic Quantum Field Theory, Evanston, IL, Row, Peterson 1961.
 +
 +
Let us calculate a couple of examples.
 +
 +
To begin, it is useful to write  with  (the sums running from 1 to <em style="">d</em>) using the series expansion   exp <em style="">x</em> = 1 + <em style="">x</em> +<em style="">x</em><sup style="">2</sup>/2 +<em style="">x</em><sup style="">3</sup>/3! ... . The typical term will be . This term is a homogeneous polynomial in the <em style="">b<sup style="">i</sup></em> of degree 2<em style="">n</em>
 +
 +
Differentiating <em style="">k</em> times a homogeneous polynomial of degree 2<em style="">n</em> and evaluating at zero will give zero unless <em style="">k</em> = 2<em style="">n</em>. So the job is to analyze the result of 2<em style="">n</em> differentiations on .
 +
 +
The differentiation carried out most frequently in these calculations is
 +
 +
where we use the symmetry of the matrix <em style="">A</em><sup style="">-1</sup>, a direct consequence of the symmetry of <em style="">A</em>.
 +
 +
In what follows  will be abbreviated as .
 +
 +
 
 +
 +
* <em style="">n</em> = 1.<em style="">A</em><sup style="">-1</sup><sub style="">1,2</sub>, using the symmetry of the matrix <em style="">A</em><sup style="">-1</sup>. The same calculation shows that  <br>
 +
 +
Note that (1,2) and (2,1) count as the same pairing.
 +
 +
 
 +
 +
* <em style="">n</em> = 2
 +
 +
Similarly:
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
 
 +
 
 +
 
 +
 +
== 5. The first appearance of graphs ==
 +
 +
<br>
 +
 +
 
 +
 +
In the last section we calculated some 2 and 4-point functions:
 +
 +
<<em style="">v</em><sup style="">1</sup>,<em style="">v</em><sup style="">2</sup>> = <em style="">A</em><sup style="">-1</sup><sub style="">1,2</sub>
 +
 +
<<em style="">v</em><sup style="">1</sup>,<em style="">v</em><sup style="">1</sup>> = <em style="">A</em><sup style="">-1</sup><sub style="">1,1</sub><<em style="">v</em><sup style="">1</sup>,<em style="">v</em><sup style="">2</sup>,<em style="">v</em><sup style="">3</sup>,<em style="">v</em><sup style="">4</sup>> = <em style="">A</em><sup style="">-1</sup><sub style="">2,3</sub><em style="">A</em><sup style="">-1</sup><sub style="">1,4</sub> + <em style="">A</em><sup style="">-1</sup><sub style="">2,4</sub><em style="">A</em><sup style="">-1</sup><sub style="">1,3</sub> + <em style="">A</em><sup style="">-1</sup><sub style="">34</sub><em style="">A</em><sup style="">-1</sup><sub style="">1,2</sub><<em style="">v</em><sup style="">1</sup>,<em style="">v</em><sup style="">1</sup>,<em style="">v</em><sup style="">3</sup>,<em style="">v</em><sup style="">4</sup>> = 2 <em style="">A</em><sup style="">-1</sup><sub style="">1,4</sub><em style="">A</em><sup style="">-1</sup><sub style="">1,3</sub> + <em style="">A</em><sup style="">-1</sup><sub style="">3,4</sub><em style="">A</em><sup style="">-1</sup><sub style="">1,1</sub><<em style="">v</em><sup style="">1</sup>,<em style="">v</em><sup style="">1</sup>,<em style="">v</em><sup style="">1</sup>,<em style="">v</em><sup style="">4</sup>> = 3 <em style="">A</em><sup style="">-1</sup><sub style="">1,4</sub><em style="">A</em><sup style="">-1</sup><sub style="">1,1</sub><<em style="">v</em><sup style="">1</sup>,<em style="">v</em><sup style="">1</sup>,<em style="">v</em><sup style="">4</sup>,<em style="">v</em><sup style="">4</sup>> = 2<em style="">A</em><sup style="">-1</sup><sub style="">1,4</sub><em style="">A</em><sup style="">-1</sup><sub style="">1,4</sub> + <em style="">A</em><sup style="">-1</sup><sub style="">4,4</sub><em style="">A</em><sup style="">-1</sup><sub style="">1,1</sub><<em style="">v</em><sup style="">1</sup>,<em style="">v</em><sup style="">1</sup>,<em style="">v</em><sup style="">1</sup>,<em style="">v</em><sup style="">1</sup>> = 3 <em style="">A</em><sup style="">-1</sup><sub style="">1,1</sub><em style="">A</em><sup style="">-1</sup><sub style="">1,1</sub>
 +
 +
<br>
 +
 +
It is convenient to represent each of products appearing on the right as a <em style="">graph</em>, where the vertices represent the indices of the coordinates <em style="">v<sup style="">i</sup></em> appearing in the <em style="">m</em>-point function, and each <em style="">A</em><sup style="">-1</sup><em style=""><sub style="">i,j</sub></em> becomes an edge from vertex <em style="">i</em> to vertex <em style="">j</em>. Here are the graphs corresponding to the terms in the 4-point functions above.
 +
 +
 
 +
 +
 +
 +
== 6. Calculations with a potential function, ``Feynman Rules'' ==
 +
 +
<br>
 +
 +
 
 +
 +
The integrals of interest in Physics have the form
 +
 +
which we rewrite using the series expansion for the exponential as
 +
 +
<br>
 +
 +
If <em style="">U</em> is a polynomial in the coordinate functions <em style="">v</em><sup style="">1</sup>, ...<em style="">v<sup style="">d</sup></em>, then each term in the sum of integrals is a sum of <em style="">m</em>-point functions, and can be evaluated by our method, which can be written symbolically as:
 +
 +
<br>
 +
 +
<em style="">Example:</em> This example is formally like the `` theory.'' We take  and analyze
 +
 +
using the abbreviation  =  as before.
 +
 +
Let us compute the terms of degree 2 in .
 +
 +
These terms will involve 6 derivatives; their sum is:
 +
 +
 
 +
 +
By Wick's Theorem we can rewrite this sum as
 +
 +
 
 +
 +
where the inside sum is taken over all pairings (<em style="">i</em><sub style="">1</sub>,<em style="">i</em><sub style="">2</sub>),(<em style="">i</em><sub style="">3</sub>,<em style="">i</em><sub style="">4</sub>)(<em style="">i</em><sub style="">5</sub><em style="">i</em><sub style="">6</sub>) of <em style="">i, j, k, i', j', k'</em>.
 +
 +
These pairings can also be represented by graphs, very much in the same way that we used for <em style="">m</em>-point functions: there will be one trivalent vertex for each <em style="">u</em> factor, and one edge for each <em style="">A</em><sup style="">-1</sup>. In this case there will be exactly two distinct graphs, according as the number of (unprimed, primed) index pairs is 1 or 3.
 +
 +
<br> The ``dumbbell'' and the ``theta''are the two 3-valent 2-vertex graphs.
 +
 +
Summing over all possible labellings of these graphs will give some duplication, since each graph has symmetries that make different labellings correspond to the same pairing.
 +
 +
 
 +
 +
<br> All eight of these labelings correspond to the same product: <em style="">u</em><sub style="">123</sub> <em style="">u</em><sub style="">456</sub> <em style="">A</em><sup style="">-1</sup><sub style="">13</sub> <em style="">A</em><sup style="">-1</sup><sub style="">25</sub> <em style="">A</em><sup style="">-1</sup><sub style="">46</sub>.
 +
 +
<br> All six of these labelings, and their six left-right mirror images, correspond to the same product: <em style="">u</em><sub style="">123</sub> <em style="">u</em><sub style="">456</sub> <em style="">A</em><sup style="">-1</sup><sub style="">14</sub> <em style="">A</em><sup style="">-1</sup><sub style="">25</sub> <em style="">A</em><sup style="">-1</sup><sub style="">36</sub>.
 +
 +
 
 +
 +
The ``dumbbell'' graph has an <em style="">automorphism</em> (symmetry) group of order eight, whereas the ``theta'' graph has an automorphism group of order twelve.
 +
 +
Keeping this in mind, we may rewrite the coefficient of  as:
 +
 +
 
 +
 +
where the sum  is taken over the set of the topologically distinct trivalent graphs with two vertices (in this case, 2), the products are taken over the set of all vertices <em style="">v</em> (here there are 2) and the set of all edges <em style="">e</em> (here there are 3) respectively, and |Aut<em style="">G</em>| is the number of automorphisms of the graph <em style="">G</em>.
 +
 +
In general, the ``Feynman rules'' for computing the coefficient of  in the expansion of <em style="">Z<sub style="">U</sub></em> are stated in exactly this way, except that the sum  is over trivalent graphs with 2<em style="">n</em> vertices (and 3<em style="">n</em> edges).
 +
 +
 
 +
 +
== 7. Correlation functions ==
 +
 +
<br>
 +
 +
 
 +
 +
The way path integrals are used in quantum field theory is, very roughly speaking, that the probability amplitude of a process going from point <em style="">v</em><sub style="">1</sub> to point <em style="">v</em><sub style="">2</sub> is an integral over all possible ways of getting from <em style="">v</em><sub style="">1</sub> to <em style="">v</em><sub style="">2</sub>. In our finite-dimensional model, each of these ``ways'' is represented by a point '''v''' in '''R'''<em style=""><sup style="">n</sup></em> and the probability measure assigned to that way is . The integral is what we called before a 2-point function
 +
 +
and what we will now call a <em style="">correlation function</em>.
 +
 +
We continue with the example of the cubic potential
 +
.
 +
By our previous calculations,
 +
 +
In terms of Wick's Theorem and our graph interpretation of pairings, this becomes:
 +
 +
 
 +
 +
where now the sum is over all graphs <em style="">G</em> with two single-valent vertices (the ends) labeled 1 and 2, and <em style="">n</em> 3-valent vertices.
 +
 +
 
 +
 +
<br> This graph occurs in the calculation of the coefficient of  in <<em style="">v</em><sup style="">1</sup>,<em style="">v</em><sup style="">2</sup>>.
 +
 +
The <em style="">k</em>-point correlation functions are similarly defined and calculated. Here is where we begin to see the usual ``Feynman diagrams.''
 +
 +
 +
 +
This graph occurs in the calculation of the coefficient of  in <<em style="">v</em><sup style="">1</sup>,<em style="">v</em><sup style="">2</sup>,<em style="">v</em><sup style="">3</sup>,<em style="">v</em><sup style="">4</sup>>.
 +
 +
 
 +
 +
<h5>history</h5>
 +
 +
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 +
 +
 
 +
 +
 
 +
 +
<h5>related items</h5>
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia</h5>
 +
 +
* http://en.wikipedia.org/wiki/
 +
* http://www.scholarpedia.org/
 +
* http://www.proofwiki.org/wiki/
 +
* Princeton companion to mathematics([[2910610/attachments/2250873|Companion_to_Mathematics.pdf]])
 +
 +
 
 +
 +
 
 +
 +
<h5>books</h5>
 +
 +
 
 +
 +
* [[2010년 books and articles]]<br>
 +
* http://gigapedia.info/1/
 +
* http://gigapedia.info/1/
 +
* http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 +
 +
 
 +
 +
 
 +
 +
<h5>expositions</h5>
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5>
 +
 +
* [http://arxiv.org/abs/quant-ph/0510032 Kindergarten Quantum Mechanics]<br>
 +
**  Bob Coecke, 2005<br>
 +
*   <br>
 +
 +
* http://www.ams.org/mathscinet
 +
* http://www.zentralblatt-math.org/zmath/en/
 +
* http://arxiv.org/
 +
* http://www.pdf-search.org/
 +
* http://pythagoras0.springnote.com/
 +
* [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html]
 +
* http://dx.doi.org/
 +
 +
 
 +
 +
 
 +
 +
<h5>question and answers(Math Overflow)</h5>
 +
 +
* http://mathoverflow.net/search?q=
 +
* http://mathoverflow.net/search?q=
 +
 +
 
 +
 +
 
 +
 +
<h5>blogs</h5>
 +
 +
*  구글 블로그 검색<br>
 +
**  http://blogsearch.google.com/blogsearch?q=<br>
 +
** http://blogsearch.google.com/blogsearch?q=
 +
* http://ncatlab.org/nlab/show/HomePage
 +
 +
 
 +
 +
 
 +
 +
<h5>experts on the field</h5>
 +
 +
* http://arxiv.org/
 +
 +
 
 +
 +
 
 +
 +
<h5>links</h5>
 +
 +
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 +
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내]
 +
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 +
* http://functions.wolfram.com/

2010년 9월 21일 (화) 14:38 판

introduction

 

 

 

 

 

Finite-dimensional Feynman Diagrams

http://www.math.sunysb.edu/~tony/whatsnew/column/feynman-1101/feynman1.html

 

 

2. Facts from calculus and their d-dimensional analogues

 


The basic fact from calculus that powers the whole discussion is:

 

  Proposition 1  

The identity with  a = 1  is proved by the trick of calculating the square of the integral in polar coordinates. The general identity follows by change of variable from  x to .

This fact generalizes to higher-dimensional integrals. Set   v = (v1, ..., vd) and   dv = (dv1 ... dvd), and let   A   be a symmetric   d by d   matrix.

 

  Proposition 2
 

We use the fact that a symmetric matrix A is diagonalizable: there exists an orthogonal matrix U (so Ut = U-1) such that UAU-1 is the diagonal matrix B whose only nonzero entries are b11, ... , bdd along the diagonal. Then A = U-1BU and vtAv = vtU-1B Uv = vtUtB Uv = wtBw where w = Uv, using Ut = U-1 and (Uv)t =vtUt. Since U is orthogonal   detU = 1   and the change of variable from v to w does not change the integral:

 

 

 

 

 

 

 

 

 

 

 

 

  Proposition 3  

This follows from Proposition 1 by completion of the square in the exponent and a change of variables.

The generalization to d dimensions replaces a with A as before and b with the vector b = (b1, ... , bd)

 

  Proposition 4  

This is proven exactly like Proposition 2. If we write this integral as Zb then the integral of Proposition 2 is Z0 and this proposition can be rewritten as

 

 

 

3. m-point functions

 


For any choice of m (not necessarily different) indices i1, ... , im between 1 and d, define the m-point function as follows:

 

 

The m-point functions are a step towards the ultimate aim of our calculation. They enter at this moment because they can be calculated by repeated differentiation ofZb

For example, note that

 

 

 

 

So the 1-point function <vi> is given by

 

 


Similarly the m-point function is given by

 

 

 

 

 

4. Wick's Theorem


 

Calculating high-order derivatives of a function like can be very messy. A useful theorem reduces the calculation to combinatorics.

Wick's theorem

 

where the sum is taken over all pairings of   i1, ..., im

Wick's theorem is proved (a careful counting argument) in texts on quantum field theory. The most detailed explanation is in S. S. Schweber, An Introduction to Relativistic Quantum Field Theory, Evanston, IL, Row, Peterson 1961.

Let us calculate a couple of examples.

To begin, it is useful to write with (the sums running from 1 to d) using the series expansion   exp x = 1 + x +x2/2 +x3/3! ... . The typical term will be . This term is a homogeneous polynomial in the bi of degree 2n

Differentiating k times a homogeneous polynomial of degree 2n and evaluating at zero will give zero unless k = 2n. So the job is to analyze the result of 2n differentiations on .

The differentiation carried out most frequently in these calculations is

where we use the symmetry of the matrix A-1, a direct consequence of the symmetry of A.

In what follows will be abbreviated as .

 

  • n = 1.A-11,2, using the symmetry of the matrix A-1. The same calculation shows that  

Note that (1,2) and (2,1) count as the same pairing.

 

  • n = 2

Similarly:

 

 

 

     

5. The first appearance of graphs


 

In the last section we calculated some 2 and 4-point functions:

<v1,v2> = A-11,2

<v1,v1> = A-11,1<v1,v2,v3,v4> = A-12,3A-11,4 + A-12,4A-11,3 + A-134A-11,2<v1,v1,v3,v4> = 2 A-11,4A-11,3 + A-13,4A-11,1<v1,v1,v1,v4> = 3 A-11,4A-11,1<v1,v1,v4,v4> = 2A-11,4A-11,4 + A-14,4A-11,1<v1,v1,v1,v1> = 3 A-11,1A-11,1


It is convenient to represent each of products appearing on the right as a graph, where the vertices represent the indices of the coordinates vi appearing in the m-point function, and each A-1i,j becomes an edge from vertex i to vertex j. Here are the graphs corresponding to the terms in the 4-point functions above.

 


6. Calculations with a potential function, ``Feynman Rules


 

The integrals of interest in Physics have the form

which we rewrite using the series expansion for the exponential as


If U is a polynomial in the coordinate functions v1, ...vd, then each term in the sum of integrals is a sum of m-point functions, and can be evaluated by our method, which can be written symbolically as:


Example: This example is formally like the `` theory. We take and analyze

using the abbreviation = as before.

Let us compute the terms of degree 2 in .

These terms will involve 6 derivatives; their sum is:

 

By Wick's Theorem we can rewrite this sum as

 

where the inside sum is taken over all pairings (i1,i2),(i3,i4)(i5i6) of i, j, k, i', j', k'.

These pairings can also be represented by graphs, very much in the same way that we used for m-point functions: there will be one trivalent vertex for each u factor, and one edge for each A-1. In this case there will be exactly two distinct graphs, according as the number of (unprimed, primed) index pairs is 1 or 3.


The ``dumbbell and the ``thetaare the two 3-valent 2-vertex graphs.

Summing over all possible labellings of these graphs will give some duplication, since each graph has symmetries that make different labellings correspond to the same pairing.

 


All eight of these labelings correspond to the same product: u123 u456 A-113 A-125 A-146.


All six of these labelings, and their six left-right mirror images, correspond to the same product: u123 u456 A-114 A-125 A-136.

 

The ``dumbbell graph has an automorphism (symmetry) group of order eight, whereas the ``theta graph has an automorphism group of order twelve.

Keeping this in mind, we may rewrite the coefficient of as:

 

where the sum is taken over the set of the topologically distinct trivalent graphs with two vertices (in this case, 2), the products are taken over the set of all vertices v (here there are 2) and the set of all edges e (here there are 3) respectively, and |AutG| is the number of automorphisms of the graph G.

In general, the ``Feynman rules for computing the coefficient of in the expansion of ZU are stated in exactly this way, except that the sum is over trivalent graphs with 2n vertices (and 3n edges).

 

7. Correlation functions


 

The way path integrals are used in quantum field theory is, very roughly speaking, that the probability amplitude of a process going from point v1 to point v2 is an integral over all possible ways of getting from v1 to v2. In our finite-dimensional model, each of these ``ways is represented by a point v in Rn and the probability measure assigned to that way is . The integral is what we called before a 2-point function

and what we will now call a correlation function.

We continue with the example of the cubic potential . By our previous calculations,

In terms of Wick's Theorem and our graph interpretation of pairings, this becomes:

 

where now the sum is over all graphs G with two single-valent vertices (the ends) labeled 1 and 2, and n 3-valent vertices.

 


This graph occurs in the calculation of the coefficient of in <v1,v2>.

The k-point correlation functions are similarly defined and calculated. Here is where we begin to see the usual ``Feynman diagrams.


This graph occurs in the calculation of the coefficient of in <v1,v2,v3,v4>.

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

 

 

expositions

 

 

 

articles

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links