"Slater 92"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Note==
type of identity==
Bailey pair 1==
Bailey pair 2==
Bailey pair ==
books==
imported>Pythagoras0 잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로) |
imported>Pythagoras0 |
||
127번째 줄: | 127번째 줄: | ||
* http://dx.doi.org/ | * http://dx.doi.org/ | ||
* | * | ||
+ | [[분류:개인노트]] |
2012년 10월 28일 (일) 16:03 판
Note==
- an explanation for dilogarithm ladder
twisted Chebyshev polynomials and dilogarithm identities
- Loxton & Lewin
\(x, -y, -z^{-1}\)가 방정식 \(x^3+3x^2-1=0\)의 해라고 하자.
\(3L(x^3)-9L(x^2)-9L(x)+7L(1)=0\)
\(3L(y^6)-6L(y^3)-27L(y^2)+18L(y)+2L(1)=0\)
\(3L(z^6)-6L(z^3)-27L(z^2)+18L(z)-2L(1)=0\)
twisted Chebyshev polynomials and dilogarithm identities
\(x, -y, -z^{-1}\)가 방정식 \(x^3+3x^2-1=0\)의 해라고 하자.
\(3L(x^3)-9L(x^2)-9L(x)+7L(1)=0\)
\(3L(y^6)-6L(y^3)-27L(y^2)+18L(y)+2L(1)=0\)
\(3L(z^6)-6L(z^3)-27L(z^2)+18L(z)-2L(1)=0\)
type of identity==
- Slater's list
- B(3)
Bailey pair 1==
- Use the folloing
\(\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}\), \(\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}\)
- Specialize
\(x=q^2, y=-q, z\to\infty\).
- Bailey pair
\(\delta_n=(-q)_{n}q^{\frac{n(n+1)}{2}}\)
\(\gamma_n=\frac{(-q)_{\infty}}{(q^2)_{\infty}}q^{\frac{n(n+1)}{2}}\)
\(\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}\), \(\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}\)
\(x=q^2, y=-q, z\to\infty\).
\(\delta_n=(-q)_{n}q^{\frac{n(n+1)}{2}}\)
\(\gamma_n=\frac{(-q)_{\infty}}{(q^2)_{\infty}}q^{\frac{n(n+1)}{2}}\)
Bailey pair 2==
- Use the following
\(\sum_{r=0}^{n}\frac{(1-aq^{2r})(-1)^{r}q^{\frac{1}{2}(r^2+r)}(a)_{r}(c)_{r}(d)_{r}a^{r}}{(a)_{n+r+1}(q)_{n-r}(q)_{r}(aq/c)_{r}(aq/d)_{r}c^{r}d^{r}}=\frac{(aq/cd)_{n}}{(q)_{n}(aq/c)_{n}(aq/d)_{n}}\)
- Specialize
\(a=q,c=-q,d=\infty\)
- Bailey pair
\(\alpha_{0}=1\), \(\alpha_{n}=(-1)^{n}q^{n^2}(1-q^{2n+1})/(1-q)\)
\(\beta_n=\sum_{r=0}^{n}\frac{\alpha_r}{(x)_{n-r}(q)_{n+r}}=\sum_{r=0}^{n}\frac{\alpha_r}{(q^{2})_{n-r}(q)_{n+r}}=\frac{1}{(q)_{n}(-q)_{n}}\)
\(\sum_{r=0}^{n}\frac{(1-aq^{2r})(-1)^{r}q^{\frac{1}{2}(r^2+r)}(a)_{r}(c)_{r}(d)_{r}a^{r}}{(a)_{n+r+1}(q)_{n-r}(q)_{r}(aq/c)_{r}(aq/d)_{r}c^{r}d^{r}}=\frac{(aq/cd)_{n}}{(q)_{n}(aq/c)_{n}(aq/d)_{n}}\)
\(a=q,c=-q,d=\infty\)
\(\alpha_{0}=1\), \(\alpha_{n}=(-1)^{n}q^{n^2}(1-q^{2n+1})/(1-q)\)
\(\beta_n=\sum_{r=0}^{n}\frac{\alpha_r}{(x)_{n-r}(q)_{n+r}}=\sum_{r=0}^{n}\frac{\alpha_r}{(q^{2})_{n-r}(q)_{n+r}}=\frac{1}{(q)_{n}(-q)_{n}}\)
Bailey pair ==
- Bailey pairs
\(\delta_n=(-q)_{n}q^{\frac{n(n+1)}{2}}\)
\(\gamma_n=\frac{(-q)_{\infty}}{(q^2)_{\infty}}q^{\frac{n(n+1)}{2}}\)
\(\alpha_{n}=(-1)^{n}q^{n^2}(1-q^{2n+1})/(1-q)\)
\(\beta_n=\frac{1}{(q)_{n}(-q)_{n}}\)
\(\delta_n=(-q)_{n}q^{\frac{n(n+1)}{2}}\)
\(\gamma_n=\frac{(-q)_{\infty}}{(q^2)_{\infty}}q^{\frac{n(n+1)}{2}}\)
\(\alpha_{n}=(-1)^{n}q^{n^2}(1-q^{2n+1})/(1-q)\)
\(\beta_n=\frac{1}{(q)_{n}(-q)_{n}}\)