"Slater 92"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
Pythagoras0 (토론 | 기여) |
||
1번째 줄: | 1번째 줄: | ||
==Note== | ==Note== | ||
− | * [[twisted Chebyshev polynomials and dilogarithm identities|an explanation for dilogarithm ladder]] | + | * [[twisted Chebyshev polynomials and dilogarithm identities|an explanation for dilogarithm ladder]][[twisted Chebyshev polynomials and dilogarithm identities|twisted Chebyshev polynomials and dilogarithm identities]] |
− | * Loxton & Lewin | + | * Loxton & Lewin<math>x, -y, -z^{-1}</math>가 방정식 <math>x^3+3x^2-1=0</math>의 해라고 하자.<math>3L(x^3)-9L(x^2)-9L(x)+7L(1)=0</math><math>3L(y^6)-6L(y^3)-27L(y^2)+18L(y)+2L(1)=0</math><math>3L(z^6)-6L(z^3)-27L(z^2)+18L(z)-2L(1)=0</math> |
11번째 줄: | 11번째 줄: | ||
* [[Slater list|Slater's list]] | * [[Slater list|Slater's list]] | ||
− | * B(3) | + | * B(3) |
19번째 줄: | 19번째 줄: | ||
==Bailey pair 1== | ==Bailey pair 1== | ||
− | * Use the folloing | + | * Use the folloing<math>\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}</math>, <math>\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}</math> |
− | * Specialize | + | * Specialize<math>x=q^2, y=-q, z\to\infty</math>. |
− | * Bailey pair | + | * Bailey pair<math>\delta_n=(-q)_{n}q^{\frac{n(n+1)}{2}}</math><math>\gamma_n=\frac{(-q)_{\infty}}{(q^2)_{\infty}}q^{\frac{n(n+1)}{2}}</math> |
29번째 줄: | 29번째 줄: | ||
==Bailey pair 2== | ==Bailey pair 2== | ||
− | * Use the following | + | * Use the following <math>\sum_{r=0}^{n}\frac{(1-aq^{2r})(-1)^{r}q^{\frac{1}{2}(r^2+r)}(a)_{r}(c)_{r}(d)_{r}a^{r}}{(a)_{n+r+1}(q)_{n-r}(q)_{r}(aq/c)_{r}(aq/d)_{r}c^{r}d^{r}}=\frac{(aq/cd)_{n}}{(q)_{n}(aq/c)_{n}(aq/d)_{n}}</math> |
− | * Specialize | + | * Specialize<math>a=q,c=-q,d=\infty</math> |
− | * Bailey pair | + | * Bailey pair<math>\alpha_{0}=1</math>, <math>\alpha_{n}=(-1)^{n}q^{n^2}(1-q^{2n+1})/(1-q)</math><math>\beta_n=\sum_{r=0}^{n}\frac{\alpha_r}{(x)_{n-r}(q)_{n+r}}=\sum_{r=0}^{n}\frac{\alpha_r}{(q^{2})_{n-r}(q)_{n+r}}=\frac{1}{(q)_{n}(-q)_{n}}</math> |
39번째 줄: | 39번째 줄: | ||
==Bailey pair == | ==Bailey pair == | ||
− | * Bailey pairs | + | * Bailey pairs<math>\delta_n=(-q)_{n}q^{\frac{n(n+1)}{2}}</math><math>\gamma_n=\frac{(-q)_{\infty}}{(q^2)_{\infty}}q^{\frac{n(n+1)}{2}}</math><math>\alpha_{n}=(-1)^{n}q^{n^2}(1-q^{2n+1})/(1-q)</math><math>\beta_n=\frac{1}{(q)_{n}(-q)_{n}}</math> |
51번째 줄: | 51번째 줄: | ||
− | * [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences] | + | * [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences] |
** http://www.research.att.com/~njas/sequences/?q= | ** http://www.research.att.com/~njas/sequences/?q= | ||
105번째 줄: | 105번째 줄: | ||
− | * [[2010년 books and articles]] | + | * [[2010년 books and articles]] |
* http://gigapedia.info/1/ | * http://gigapedia.info/1/ | ||
* http://gigapedia.info/1/ | * http://gigapedia.info/1/ |
2020년 11월 12일 (목) 23:39 판
Note
- an explanation for dilogarithm laddertwisted Chebyshev polynomials and dilogarithm identities
- Loxton & Lewin\(x, -y, -z^{-1}\)가 방정식 \(x^3+3x^2-1=0\)의 해라고 하자.\(3L(x^3)-9L(x^2)-9L(x)+7L(1)=0\)\(3L(y^6)-6L(y^3)-27L(y^2)+18L(y)+2L(1)=0\)\(3L(z^6)-6L(z^3)-27L(z^2)+18L(z)-2L(1)=0\)
type of identity
- Slater's list
- B(3)
Bailey pair 1
- Use the folloing\(\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}\), \(\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}\)
- Specialize\(x=q^2, y=-q, z\to\infty\).
- Bailey pair\(\delta_n=(-q)_{n}q^{\frac{n(n+1)}{2}}\)\(\gamma_n=\frac{(-q)_{\infty}}{(q^2)_{\infty}}q^{\frac{n(n+1)}{2}}\)
Bailey pair 2
- Use the following \(\sum_{r=0}^{n}\frac{(1-aq^{2r})(-1)^{r}q^{\frac{1}{2}(r^2+r)}(a)_{r}(c)_{r}(d)_{r}a^{r}}{(a)_{n+r+1}(q)_{n-r}(q)_{r}(aq/c)_{r}(aq/d)_{r}c^{r}d^{r}}=\frac{(aq/cd)_{n}}{(q)_{n}(aq/c)_{n}(aq/d)_{n}}\)
- Specialize\(a=q,c=-q,d=\infty\)
- Bailey pair\(\alpha_{0}=1\), \(\alpha_{n}=(-1)^{n}q^{n^2}(1-q^{2n+1})/(1-q)\)\(\beta_n=\sum_{r=0}^{n}\frac{\alpha_r}{(x)_{n-r}(q)_{n+r}}=\sum_{r=0}^{n}\frac{\alpha_r}{(q^{2})_{n-r}(q)_{n+r}}=\frac{1}{(q)_{n}(-q)_{n}}\)
Bailey pair
- Bailey pairs\(\delta_n=(-q)_{n}q^{\frac{n(n+1)}{2}}\)\(\gamma_n=\frac{(-q)_{\infty}}{(q^2)_{\infty}}q^{\frac{n(n+1)}{2}}\)\(\alpha_{n}=(-1)^{n}q^{n^2}(1-q^{2n+1})/(1-q)\)\(\beta_n=\frac{1}{(q)_{n}(-q)_{n}}\)
q-series identity
\(\sum_{n=0}^{\infty}\frac{(q^3;q^3)_{n}q^{n(n+1)}}{ (q)_{n}(q;q^{2})_n(q^2;q^2)_{n}}=\frac{(q^{9};q^{27})_{\infty}(q^{18};q^{27})_{\infty}(q^{27};q^{27})_{\infty}}{(q)_{\infty}}\)
Bethe type equation (cyclotomic equation)
Let \(\sum_{n=0}^{\infty}\frac{q^{n(an+b)/2}}{ \prod_{j=1}^{r}(q^{c_j};q^{d_j})_n^{e_j}}=\sum_{N=0}^{\infty} a_N q^{N}\).
Then \(\prod_{j=1}^{r}(1-x^{d_j})^{e_j}=x^a\) has a unique root \(0<\mu<1\). We get
\(\log^2 a_N \sim 4N\sum_{j=1}^{r}\frac{e_j}{d_j}L(1-\mu^{d_j})\)
a=2,d_1=1,d_2=2,d_3=2,e_1=e_2=e_3=1
\(\frac{(1-x)(1-x^2)^2}{(1-x^3)}=x^2\)
\(x^3+3x^2-1=0\)
\(x, -y, -z^{-1}\)가 방정식 의 해 http://www.wolframalpha.com/input/?i=x^3%2B3x^2-1%3D0
dilogarithm identity
\(L(x^3)-3L(x^2)-3L(x)=-\frac{7}{3}L(1)\)
books
- 2010년 books and articles
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
articles