"Z k parafermion theory"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
5번째 줄: | 5번째 줄: | ||
* the highest-weight modules are parametrized by an integer (Dynkin label) l with <math>0\leq l < k</math> | * the highest-weight modules are parametrized by an integer (Dynkin label) l with <math>0\leq l < k</math> | ||
* <math>\mathbb{Z}_k</math> parafermion theory is known to be equivalent to the coset <math>\hat{\text{su}}(2)_k/\hat{u}(1)</math> | * <math>\mathbb{Z}_k</math> parafermion theory is known to be equivalent to the coset <math>\hat{\text{su}}(2)_k/\hat{u}(1)</math> | ||
− | * Kac and Petersen obtained expression for the parafermion characters | + | * Kac and Petersen (1984) obtained expression for the parafermion characters |
− | * Lepowsky-Primc expression in fermionic form | + | * Lepowsky-Primc (1985) expression in fermionic form |
* third expression | * third expression | ||
13번째 줄: | 13번째 줄: | ||
− | <h5> | + | <h5><math>\mathbb{Z}_{n+1}</math> theory</h5> |
+ | |||
+ | * central charge<br><math>\frac{2n}{n+3}</math><br> | ||
+ | |||
+ | |||
2011년 7월 6일 (수) 09:29 판
introduction
- parafermionic Hilbert space
- defined by the algebra of parafermionic fields \(\psi_1\) and \(\psi _1^{\dagger }\) of dimension 1-1/k and central charge 2(k-1)/(k+2)
- the highest-weight modules are parametrized by an integer (Dynkin label) l with \(0\leq l < k\)
- \(\mathbb{Z}_k\) parafermion theory is known to be equivalent to the coset \(\hat{\text{su}}(2)_k/\hat{u}(1)\)
- Kac and Petersen (1984) obtained expression for the parafermion characters
- Lepowsky-Primc (1985) expression in fermionic form
- third expression
\(\mathbb{Z}_{n+1}\) theory
- central charge
\(\frac{2n}{n+3}\)
history
encyclopedia
- http://en.wikipedia.org/wiki/
- http://www.scholarpedia.org/
- http://www.proofwiki.org/wiki/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
books
- 2010년 books and articles
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
expositions
articles
- Keegan, Sinéad, and Werner Nahm. 2011. “Nahm’s conjecture and coset models.” 1103.4986 (March 25). http://arxiv.org/abs/1103.4986
- Fortin, J. -F, P. Mathieu와/과S. O Warnaar. 2006. “Characters of graded parafermion conformal field theory”. hep-th/0602248 (2월 23). [1]http://arxiv.org/abs/hep-th/0602248
- Conjugate Bailey pairs. From configuration sums and fractional-level string functions to Bailey's lemma.,Anne Schilling, S. Ole Warnaar, 1999
- Spinons and parafermions in fermion cosets
- D. C. Cabra, Lecture Notes in Physics, 1998, Volume 509/1998, 220-229
- D. C. Cabra, Lecture Notes in Physics, 1998, Volume 509/1998, 220-229
- Modular invariant partition functions for parafermionic field theories
- D. Gepner and Z. Qiu (1987), Nucl. Phys. B 285, 423.
- Infinite-dimensional Lie algebras, theta functions and modular forms.,Kac, V.G., Peterson, D.H., Adv. Math.53, 125 (1984)
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://arxiv.org/
- http://www.pdf-search.org/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://dx.doi.org/10.1007/BFb0105250
question and answers(Math Overflow)
blogs
- 구글 블로그 검색
- http://ncatlab.org/nlab/show/HomePage
experts on the field