"Z k parafermion theory"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 잔글 (찾아 바꾸기 – “* Princeton companion to mathematics(Companion_to_Mathematics.pdf)” 문자열을 “” 문자열로) |
imported>Pythagoras0 |
||
9번째 줄: | 9번째 줄: | ||
* third expression | * third expression | ||
− | + | ||
− | + | ||
==<math>\mathbb{Z}_{n+1}</math> theory== | ==<math>\mathbb{Z}_{n+1}</math> theory== | ||
− | * central charge | + | * central charge<math>\frac{2n}{n+3}</math> |
− | + | ||
− | + | ||
− | + | ||
==history== | ==history== | ||
27번째 줄: | 27번째 줄: | ||
* http://www.google.com/search?hl=en&tbs=tl:1&q= | * http://www.google.com/search?hl=en&tbs=tl:1&q= | ||
− | + | ||
− | + | ||
==related items== | ==related items== | ||
36번째 줄: | 36번째 줄: | ||
* [[Ising models]] | * [[Ising models]] | ||
* [[3-states Potts model]] | * [[3-states Potts model]] | ||
− | + | * [[Graded parafermion theory]] | |
− | + | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | * [[ | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==articles== | ==articles== | ||
80번째 줄: | 44번째 줄: | ||
* Fortin, J. -F, P. Mathieu와/과S. O Warnaar. 2006. “Characters of graded parafermion conformal field theory”. <em>hep-th/0602248</em> (2월 23). [http://arxiv.org/abs/hep-th/0602248 ]http://arxiv.org/abs/hep-th/0602248 | * Fortin, J. -F, P. Mathieu와/과S. O Warnaar. 2006. “Characters of graded parafermion conformal field theory”. <em>hep-th/0602248</em> (2월 23). [http://arxiv.org/abs/hep-th/0602248 ]http://arxiv.org/abs/hep-th/0602248 | ||
* [http://arxiv.org/abs/math/9906092 Conjugate Bailey pairs. From configuration sums and fractional-level string functions to Bailey's lemma.],Anne Schilling, S. Ole Warnaar, 1999 | * [http://arxiv.org/abs/math/9906092 Conjugate Bailey pairs. From configuration sums and fractional-level string functions to Bailey's lemma.],Anne Schilling, S. Ole Warnaar, 1999 | ||
− | * | + | * Cabra, D. C. 1998. “Spinons and Parafermions in Fermion Cosets.” In Supersymmetry and Quantum Field Theory, edited by Julius Wess and Vladimir P. Akulov, 220–229. Lecture Notes in Physics 509. Springer Berlin Heidelberg. http://link.springer.com/chapter/10.1007/BFb0105250. |
− | + | * [http://dx.doi.org/10.1016/0370-2693%2889%2991194-5 Bosonization of ZN parafermions and su(2)N Kac -Moody algebra] | |
− | + | * Gepner, Doron, and Zongan Qiu. 1987. “Modular Invariant Partition Functions for Parafermionic Field Theories.” Nuclear Physics B 285: 423–453. doi:[http://dx.doi.org/10.1016/0550-3213%2887%2990348-8 10.1016/0550-3213(87)90348-8]. | |
− | * [http://dx.doi.org/10.1016/0370-2693%2889%2991194-5 Bosonization of ZN parafermions and su(2)N Kac -Moody algebra] | + | * Gepner, Doron. 1987. “New Conformal Field Theories Associated with Lie Algebras and Their Partition Functions.” Nuclear Physics B 290: 10–24. doi:[http://dx.doi.org/10.1016/0550-3213(87)90176-3 10.1016/0550-3213(87)90176-3]. |
− | + | * [http://dx.doi.org/10.1016/0001-8708%2884%2990032-X Infinite-dimensional Lie algebras, theta functions and modular forms.],Kac, V.G., Peterson, D.H., Adv. Math.53, 125 (1984) | |
− | * [http://dx.doi.org/10.1016/0550-3213%2887%2990348-8 | ||
− | * | ||
− | |||
− | * [http://dx.doi.org/10.1016/0001-8708%2884%2990032-X Infinite-dimensional Lie algebras, theta functions and modular forms.],Kac, V.G., Peterson, D.H., Adv. Math.53, 125 (1984) | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
[[분류:개인노트]] | [[분류:개인노트]] | ||
[[분류:thesis]] | [[분류:thesis]] | ||
[[분류:conformal field theory]] | [[분류:conformal field theory]] |
2013년 7월 11일 (목) 04:44 판
introduction
- parafermionic Hilbert space
- defined by the algebra of parafermionic fields \(\psi_1\) and \(\psi _1^{\dagger }\) of dimension 1-1/k and central charge 2(k-1)/(k+2)
- the highest-weight modules are parametrized by an integer (Dynkin label) l with \(0\leq l < k\)
- \(\mathbb{Z}_k\) parafermion theory is known to be equivalent to the coset \(\hat{\text{su}}(2)_k/\hat{u}(1)\)
- Kac and Petersen (1984) obtained expression for the parafermion characters
- Lepowsky-Primc (1985) expression in fermionic form
- third expression
\(\mathbb{Z}_{n+1}\) theory
- central charge\(\frac{2n}{n+3}\)
history
- CFT on torus and modular invariant partition functions
- Ising models
- 3-states Potts model
- Graded parafermion theory
articles
- Keegan, Sinéad, and Werner Nahm. 2011. “Nahm’s conjecture and coset models.” 1103.4986 (March 25). http://arxiv.org/abs/1103.4986
- Fortin, J. -F, P. Mathieu와/과S. O Warnaar. 2006. “Characters of graded parafermion conformal field theory”. hep-th/0602248 (2월 23). [1]http://arxiv.org/abs/hep-th/0602248
- Conjugate Bailey pairs. From configuration sums and fractional-level string functions to Bailey's lemma.,Anne Schilling, S. Ole Warnaar, 1999
- Cabra, D. C. 1998. “Spinons and Parafermions in Fermion Cosets.” In Supersymmetry and Quantum Field Theory, edited by Julius Wess and Vladimir P. Akulov, 220–229. Lecture Notes in Physics 509. Springer Berlin Heidelberg. http://link.springer.com/chapter/10.1007/BFb0105250.
- Bosonization of ZN parafermions and su(2)N Kac -Moody algebra
- Gepner, Doron, and Zongan Qiu. 1987. “Modular Invariant Partition Functions for Parafermionic Field Theories.” Nuclear Physics B 285: 423–453. doi:10.1016/0550-3213(87)90348-8.
- Gepner, Doron. 1987. “New Conformal Field Theories Associated with Lie Algebras and Their Partition Functions.” Nuclear Physics B 290: 10–24. doi:10.1016/0550-3213(87)90176-3.
- Infinite-dimensional Lie algebras, theta functions and modular forms.,Kac, V.G., Peterson, D.H., Adv. Math.53, 125 (1984)