"Z k parafermion theory"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
 
 
* parafermionic Hilbert space
 
* parafermionic Hilbert space
* defined by the algebra of parafermionic fields <math>\psi_1</math> and <math>\psi _1^{\dagger }</math> of dimension 1-1/k and central charge 2(k-1)/(k+2)
+
* defined by the algebra of parafermionic fields <math>\psi_1</math> and <math>\psi _1^{\dagger }</math> of dimension 1-1/k and central charge $$c=\frac{3k}{k+2}-1=\frac{2(k-1)}{(k+2)}$$
* the highest-weight modules are parametrized by an integer (Dynkin label) l with <math>0\leq l < k</math>
+
* the highest-weight modules are parametrized by an integer (Dynkin label) $l$ with <math>0\leq l < k</math>
 
* <math>\mathbb{Z}_k</math> parafermion theory is known to be equivalent to the coset <math>\hat{\text{su}}(2)_k/\hat{u}(1)_k</math>
 
* <math>\mathbb{Z}_k</math> parafermion theory is known to be equivalent to the coset <math>\hat{\text{su}}(2)_k/\hat{u}(1)_k</math>
 
* Kac and Peterson (1984) obtained expression for the parafermion characters
 
* Kac and Peterson (1984) obtained expression for the parafermion characters

2014년 10월 12일 (일) 00:10 판

introduction

  • parafermionic Hilbert space
  • defined by the algebra of parafermionic fields \(\psi_1\) and \(\psi _1^{\dagger }\) of dimension 1-1/k and central charge $$c=\frac{3k}{k+2}-1=\frac{2(k-1)}{(k+2)}$$
  • the highest-weight modules are parametrized by an integer (Dynkin label) $l$ with \(0\leq l < k\)
  • \(\mathbb{Z}_k\) parafermion theory is known to be equivalent to the coset \(\hat{\text{su}}(2)_k/\hat{u}(1)_k\)
  • Kac and Peterson (1984) obtained expression for the parafermion characters
  • Lepowsky-Primc (1985) expression in fermionic form
  • third expression

\(\mathbb{Z}_{n+1}\) theory

  • central charge\(\frac{2n}{n+3}\)




history



related items


articles

  • Keegan, Sinéad, and Werner Nahm. 2011. “Nahm’s conjecture and coset models.” 1103.4986 (March 25). http://arxiv.org/abs/1103.4986
  • Fortin, J.-F., P. Mathieu, and S. O. Warnaar. 2006. “Characters of Graded Parafermion Conformal Field Theory”. ArXiv e-print hep-th/0602248. http://arxiv.org/abs/hep-th/0602248.
  • Schilling, Anne, and S. Ole Warnaar. “Conjugate Bailey Pairs.” arXiv:math/9906092, June 14, 1999. http://arxiv.org/abs/math/9906092.
  • Cabra, D. C. 1998. “Spinons and Parafermions in Fermion Cosets.” In Supersymmetry and Quantum Field Theory, edited by Julius Wess and Vladimir P. Akulov, 220–229. Lecture Notes in Physics 509. Springer Berlin Heidelberg. http://link.springer.com/chapter/10.1007/BFb0105250.
  • Fateev, V. A., and Al. B. Zamolodchikov. “Integrable Perturbations of ZN Parafermion Models and the O(3) Sigma Model.” Physics Letters B 271, no. 1–2 (November 14, 1991): 91–100. doi:10.1016/0370-2693(91)91283-2.
  • Bilal, Adel. “Bosonization of ZN Parafermions and su(2)N KAČ-Moody Algebra.” Physics Letters B 226, no. 3–4 (August 10, 1989): 272–78. doi:10.1016/0370-2693(89)91194-5.
  • Gepner, Doron, and Zongan Qiu. 1987. “Modular Invariant Partition Functions for Parafermionic Field Theories.” Nuclear Physics B 285: 423–453. doi:10.1016/0550-3213(87)90348-8.
  • Gepner, Doron. 1987. “New Conformal Field Theories Associated with Lie Algebras and Their Partition Functions.” Nuclear Physics B 290: 10–24. doi:10.1016/0550-3213(87)90176-3.
  • Kac, Victor G, and Dale H Peterson. 1984. “Infinite-dimensional Lie Algebras, Theta Functions and Modular Forms.” Advances in Mathematics 53 (2) (August): 125–264. doi:10.1016/0001-8708(84)90032-X.