"Differential Galois theory"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
45번째 줄: 45번째 줄:
 
 
 
 
  
[[#]]
+
[http://www.caminos.upm.es/matematicas/morales%20ruiz/libroFSB.pdf Differential Galois Theory and Non-Integrability of Hamiltonian Systems]
 +
 
 +
=== [http://www.google.com/url?sa=t&source=web&ct=res&cd=1&ved=0CA4QFjAA&url=http%3A%2F%2Fwww.iop.org%2FEJ%2Fabstract%2F0036-0279%2F38%2F1%2FR01&ei=lC8vS8nOIYqasgPAxYC7BA&usg=AFQjCNEbFgEgKKkYePd8PTExF9JevV6EQA&sig2=kEI9jPaMRI5NgzmUvWr9tA Integrability and non-integrability in Hamiltonian mechanic] ===
  
 
 
 
 
65번째 줄: 67번째 줄:
 
 
 
 
  
 
+
http://www.caminos.upm.es/matematicas/morales%20ruiz/libroFSB.pdf
  
 
<h5>표준적인 도서 및 추천도서</h5>
 
<h5>표준적인 도서 및 추천도서</h5>

2009년 12월 21일 (월) 18:24 판

  • adele and idele
  • differential galois theory
  • Liouville 

 

elementary extension
  • using exponential and logarithm
  • elementary element

 

 

Liouville extension
  • we can adjoin integrals and exponentials of integrals + algbraic extension
  • an element is said to be representable by a generalized quadrature

 

Picard-Vessiot extension
  • examples
    • algebraic extension
    • adjoining an integral
    • adjoining the exponential of an integral

 

theorem

If a Picard-Vessiot extension is a Liouville extension, then the Galois group of this extension is solvable.

 

solution by quadrature

 

 

Differential Galois Theory and Non-Integrability of Hamiltonian Systems

Integrability and non-integrability in Hamiltonian mechanic

 

 

하위페이지

 

 

http://www.caminos.upm.es/matematicas/morales%20ruiz/libroFSB.pdf

표준적인 도서 및 추천도서
  • Abel_s_theorem_by_Arnold.djvu
  • arnold book on abel theorem problem 348
  • An introduction to differential algebra
    • Irving Kaplansky
  • algebraic theory of differential equations

 

 

참고할만한 자료