"Differential Galois theory"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지의 이름을 differential Galois theory로 바꾸었습니다.)
3번째 줄: 3번째 줄:
  
 
* Liouville 
 
* Liouville 
 +
 +
 
 +
 +
 
 +
 +
<h5>historical origin</h5>
 +
 +
* integration in finite terms
 +
* quadrature of second order differential equation (Fuchsian differential equation)
 +
 +
 
 +
 +
 
 +
 +
<h5>differential field</h5>
 +
 +
*  
  
 
 
 
 
44번째 줄: 61번째 줄:
  
 
* regular singularity
 
* regular singularity
*  indicial equation<br>  <br>
+
*  indicial equation<br><math>x(x-1)+px+q=0</math><br>  <br>
 
 
 
 
  
 
 
 
 
53번째 줄: 68번째 줄:
  
 
* [http://ocw.mit.edu/NR/rdonlyres/Mathematics/18-034Spring-2007/Readings/notesqd.pdf QD. SOLUTION BY QUADRATURE]
 
* [http://ocw.mit.edu/NR/rdonlyres/Mathematics/18-034Spring-2007/Readings/notesqd.pdf QD. SOLUTION BY QUADRATURE]
 
+
* [http://www.caminos.upm.es/matematicas/morales%20ruiz/libroFSB.pdf Differential Galois Theory and Non-Integrability of Hamiltonian Systems]
 
+
* [http://www.caminos.upm.es/matematicas/morales%20ruiz/libroFSB.pdf ][http://www.google.com/url?sa=t&source=web&ct=res&cd=1&ved=0CA4QFjAA&url=http%3A%2F%2Fwww.iop.org%2FEJ%2Fabstract%2F0036-0279%2F38%2F1%2FR01&ei=lC8vS8nOIYqasgPAxYC7BA&usg=AFQjCNEbFgEgKKkYePd8PTExF9JevV6EQA&sig2=kEI9jPaMRI5NgzmUvWr9tA Integrability and non-integrability in Hamiltonian mechanic]
 
 
 
 
 
 
[http://www.caminos.upm.es/matematicas/morales%20ruiz/libroFSB.pdf Differential Galois Theory and Non-Integrability of Hamiltonian Systems]
 
 
 
=== [http://www.google.com/url?sa=t&source=web&ct=res&cd=1&ved=0CA4QFjAA&url=http%3A%2F%2Fwww.iop.org%2FEJ%2Fabstract%2F0036-0279%2F38%2F1%2FR01&ei=lC8vS8nOIYqasgPAxYC7BA&usg=AFQjCNEbFgEgKKkYePd8PTExF9JevV6EQA&sig2=kEI9jPaMRI5NgzmUvWr9tA Integrability and non-integrability in Hamiltonian mechanic] ===
 
  
 
 
 
 
75번째 줄: 84번째 줄:
 
** [[number fields and threefolds]]<br>
 
** [[number fields and threefolds]]<br>
 
** [[3072420|대수적정수론]]<br>
 
** [[3072420|대수적정수론]]<br>
 +
 +
 
 +
 +
http://www.caminos.upm.es/matematicas/morales%20ruiz/libroFSB.pdf
  
 
 
 
 
80번째 줄: 93번째 줄:
 
 
 
 
  
http://www.caminos.upm.es/matematicas/morales%20ruiz/libroFSB.pdf
+
 
  
 
<h5>표준적인 도서 및 추천도서</h5>
 
<h5>표준적인 도서 및 추천도서</h5>
89번째 줄: 102번째 줄:
 
**  Irving Kaplansky<br>
 
**  Irving Kaplansky<br>
 
*  algebraic theory of differential equations<br>
 
*  algebraic theory of differential equations<br>
 
 
* http://gigapedia.info/1/galois_theory
 
* http://gigapedia.info/1/galois_theory
 
* http://gigapedia.info/1/differential+galois+theory
 
* http://gigapedia.info/1/differential+galois+theory
98번째 줄: 110번째 줄:
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
* http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
* [http://www.amazon.com/exec/obidos/ASIN/048649568X/ebk-20/ Algebraic Functions (Dover Phoenix Editions)]<br>
 
** '''Gilbert Ames Bliss '''<br>
 
** http://gigapedia.org/v5/item:view_links?id=100873<br>
 
  
 
 
 
 

2009년 12월 31일 (목) 04:57 판

  • adele and idele
  • differential galois theory
  • Liouville 

 

 

historical origin
  • integration in finite terms
  • quadrature of second order differential equation (Fuchsian differential equation)

 

 

differential field
  •  

 

elementary extension
  • using exponential and logarithm
  • elementary element

 

 

Liouville extension
  • we can adjoin integrals and exponentials of integrals + algbraic extension
  • an element is said to be representable by a generalized quadrature

 

 

Picard-Vessiot extension
  • examples
    • algebraic extension
    • adjoining an integral
    • adjoining the exponential of an integral

 

theorem

If a Picard-Vessiot extension is a Liouville extension, then the Galois group of this extension is solvable.

 

 

Fuchsian differential equation
  • regular singularity
  • indicial equation
    \(x(x-1)+px+q=0\)
     

 

solution by quadrature

 

 

하위페이지

 

http://www.caminos.upm.es/matematicas/morales%20ruiz/libroFSB.pdf

 

 

 

표준적인 도서 및 추천도서

 

 

참고할만한 자료