"Differential Galois theory"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
103번째 줄: 103번째 줄:
 
* [[1925178/attachments/857140|Abel_s_theorem_by_Arnold.djvu]]<br>
 
* [[1925178/attachments/857140|Abel_s_theorem_by_Arnold.djvu]]<br>
 
*  arnold book on abel theorem problem 348<br>
 
*  arnold book on abel theorem problem 348<br>
 +
*  Group Theory and Differential Equations<br>
 +
** Lawrence Markus
 
*  An introduction to differential algebra<br>
 
*  An introduction to differential algebra<br>
 
**  Irving Kaplansky<br>
 
**  Irving Kaplansky<br>

2010년 1월 1일 (금) 04:51 판

  • adele and idele
  • differential galois theory
  • Liouville 

 

 

historical origin
  • integration in finite terms
  • quadrature of second order differential equation (Fuchsian differential equation)

 

 

differential field
  •  

 

elementary extension
  • using exponential and logarithm
  • elementary element

 

 

Liouville extension
  • we can adjoin integrals and exponentials of integrals + algbraic extension
  • an element is said to be representable by a generalized quadrature

 

 

Picard-Vessiot extension
  • examples
    • algebraic extension
    • adjoining an integral
    • adjoining the exponential of an integral

 

theorem

If a Picard-Vessiot extension is a Liouville extension, then the Galois group of this extension is solvable.

 

 

Fuchsian differential equation
  • regular singularity
  • indicial equation
    \(x(x-1)+px+q=0\)
     

 

solution by quadrature

 

 

하위페이지

 

http://www.caminos.upm.es/matematicas/morales%20ruiz/libroFSB.pdf

 

 

 

표준적인 도서 및 추천도서

 

 

참고할만한 자료