"Differential Galois theory"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
1번째 줄: 1번째 줄:
<h5>introduction</h5>
+
==introduction</h5>
  
 
* differential galois theory
 
* differential galois theory
9번째 줄: 9번째 줄:
 
 
 
 
  
<h5>historical origin</h5>
+
==historical origin</h5>
  
 
* integration in finite terms
 
* integration in finite terms
18번째 줄: 18번째 줄:
 
 
 
 
  
<h5>solution by quadrature</h5>
+
==solution by quadrature</h5>
  
 
* [http://pythagoras0.springnote.com/pages/4913609 일계 선형미분방정식]<br><math>\frac{dy}{dx}+a(x)y=b(x)</math><br><math>y(x)e^{\int a(x)\,dx}=\int b(x)e^{\int a(x)\,dx} \,dx+C</math><br>
 
* [http://pythagoras0.springnote.com/pages/4913609 일계 선형미분방정식]<br><math>\frac{dy}{dx}+a(x)y=b(x)</math><br><math>y(x)e^{\int a(x)\,dx}=\int b(x)e^{\int a(x)\,dx} \,dx+C</math><br>
28번째 줄: 28번째 줄:
 
 
 
 
  
<h5>differential field</h5>
+
==differential field</h5>
  
 
*  a pair <math>(F,\partial)</math> such that<br>
 
*  a pair <math>(F,\partial)</math> such that<br>
39번째 줄: 39번째 줄:
 
 
 
 
  
<h5>solvable by quadratures</h5>
+
==solvable by quadratures</h5>
  
 
* basic functions : basic elementary functions
 
* basic functions : basic elementary functions
50번째 줄: 50번째 줄:
 
 
 
 
  
<h5>elementary extension</h5>
+
==elementary extension</h5>
  
 
* it is allowed to take exponentials and logarithms to make a field extension
 
* it is allowed to take exponentials and logarithms to make a field extension
92번째 줄: 92번째 줄:
 
 
 
 
  
<h5>Picard-Vessiot extension</h5>
+
==Picard-Vessiot extension</h5>
  
 
* framework for linear differential equation
 
* framework for linear differential equation
116번째 줄: 116번째 줄:
 
 
 
 
  
<h5>Fuchsian differential equation</h5>
+
==Fuchsian differential equation</h5>
  
 
* differential equation with regular singularities
 
* differential equation with regular singularities
131번째 줄: 131번째 줄:
 
 
 
 
  
<h5>solution by quadrature</h5>
+
==solution by quadrature</h5>
  
 
* [http://www.caminos.upm.es/matematicas/morales%20ruiz/libroFSB.pdf Differential Galois Theory and Non-Integrability of Hamiltonian Systems]
 
* [http://www.caminos.upm.es/matematicas/morales%20ruiz/libroFSB.pdf Differential Galois Theory and Non-Integrability of Hamiltonian Systems]
178번째 줄: 178번째 줄:
 
 
 
 
  
<h5>books</h5>
+
==books</h5>
  
 
*  Group Theory and Differential Equations<br>
 
*  Group Theory and Differential Equations<br>

2012년 10월 28일 (일) 12:57 판

==introduction

  • differential galois theory
  • Liouville 
  • 2008년 12월 9일 MCF 'differential Galois theory'

 

 

==historical origin

  • integration in finite terms
  • quadrature of second order differential equation (Fuchsian differential equation)

 

 

==solution by quadrature

  • 일계 선형미분방정식
    \(\frac{dy}{dx}+a(x)y=b(x)\)
    \(y(x)e^{\int a(x)\,dx}=\int b(x)e^{\int a(x)\,dx} \,dx+C\)
  • \(y''-2xy'=0\)
    \(y=\int e^{x^2}\, dx\)
  • note that the integral of an exponential naturally shows up in expression solutions

 

 

==differential field

  • a pair \((F,\partial)\) such that
    • \(\partial(a+b)=\partial a+\partial b\)
    • \(\partial(ab)=(\partial a)b+a(\partial b)\)
  • \(C_F=\ker \partial\)

 

 

==solvable by quadratures

  • basic functions : basic elementary functions
  • allowed operatrions : compositions, arithmetic operations, differentiation, integration
  • examples
    • an elliptic integral is representable by quadrature

 

 

==elementary extension

  • it is allowed to take exponentials and logarithms to make a field extension
  • elementary element
  • difference between Liouville extension
    • exponential+ integral <=> differentiation + exponential of integral
    • in elementary extension, we are not allowed to get an integrated element

 

 

Liouville extension
  • an element is said to be representable by a generalized quadrature
  • we can capture these properties using the concept of Liouville extension
  • to get a Liouville extension, we can adjoin
    • integrals
    • exponentials of integrals
    • algebraic extension (generalized Liouville extension)
      • from these we can include the following operations
        • exponential
        • logarithm
  • For\(K_{i}=K_{i-1}(e_i)\) , one of the following condition holds
    • \(e_i'\in K_{i-1}\), i.e. \(e_i=\int e_i'\in K_i\)
    • \(e_{i}'/e_{i}\in K_{i-1}\) i.e. \((\log e_i)' \in K_{i-1}\)
    • \(e_{i}\) is algebraic over \(K_{i-1}\)
  • remark on exponentiation
    • Let \(a,a'\in F\). Is \(b=e^a\in K\) where K is a Liouville extension?
    • \(b'=a' e^a=a'b\) implies \(a'=\frac{b'}{b}\in F\).
    • the exponential of the integral of a' i.e. \(e^{\int a'}=e^a+c\) must be in the Liouville extension. So \(b=e^a\in K\).
  • remark on logarithm
    • \(b=\log a\) is the integral of \(a'/a\in F\). So \(b\in K\)
  • a few result
    • K/F is a Liouville extension iff the differential Galois group K over F is solvable.
    • K/F is a generalized Liouville extension iff the differential Galois group K over F has the solvable component of the identity

 

 

==Picard-Vessiot extension

  • framework for linear differential equation
  • field extension is made by including solutions of DE to the base field (e.g. rational function field)
  • consider monic differential equations over a differential field F
    \(\mathcal{L}[Y]=Y^{(n)}+a_{n-1}Y^{(n-1)}+\cdots+a_{1}Y^{(1)}+a_0\), \(a_i\in F\)
  • \((E,\partial_E)\supseteq (F,\partial_F)\) is a Picard-Vessiot extension for \(\mathcal{L}\) if
    • E/F is generated by n linear independent solution to \(\mathcal{L}\), i.e. adjoining basis of \(V=\mathcal{L}^{-1}(0)\) to F
    • \(C_E=C_F\), \(\partial_E\mid_F=\partial_F\)
  • this corresponds to the concept of the splitting fields(or Galois extensions)
  • examples
    • algebraic extension
    • adjoining an integral
    • adjoining the exponential of an integral
  • we can define a Galois group for a linear differential equation
    \(\operatorname{Gal}(E/F)=\{\sigma\in\operatorname{Aut}E|\partial(\sigma(n))=\sigma(\partial a), \sigma\mid _F=\operatorname{id} \}\)
    • the action of an element of the Galois group is determined by its action on a basis of V

theorem

If a Picard-Vessiot extension is a Liouville extension, then the Galois group of this extension is solvable.

 

 

==Fuchsian differential equation

  • differential equation with regular singularities
  • indicial equation
    \(x(x-1)+px+q=0\)

theorem

A Fuchsian linear differential equation is solvable by quadratures if and only if the monodromy group of this equation is solvable.

 

 

 

==solution by quadrature

 

 

related items

 

 

 

encyclopedia

 

 

articles

 

 

==books