"PSLQ for dilogarithm identities"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지를 개설하였습니다.)
 
1번째 줄: 1번째 줄:
 +
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">introduction</h5>
  
 +
 
 +
 +
 
 +
 +
Implement the [[PSLQ algorithm]] first.
 +
 +
 
 +
 +
#   <br> PSLQ[inx_List, prec_] :=<br>  Block[<br>   {<br>    x,<br>    n = Length[inx],<br>    \[Gamma] = 2/Sqrt[3],<br>    A, B, H, D, Dinv, t, i, j, k, l, iter,<br>    \[Alpha], \[Beta], \[Lambda], \[Delta], r, R<br>    },<br>   (*Initialize*)<br>   x = N[inx /Sqrt[inx . inx], prec];<br>   s = Sqrt[MapIndexed[Plus @@ Drop[x^2, First[#2] - 1] &, x]];<br>   A = B = IdentityMatrix[n];<br>   H = Table[Which[<br>      i > j, (-x[[i]]*x[[j]])/(s[[j]]*s[[j + 1]]),<br>      i == j, s[[i + 1]]/s[[i]],<br>      i < j, 0<br>      ], {i, 1, n}, {j, 1, n - 1}];<br>   (* Reduce H *)<br>   t = HermiteReduce[H];<br>   D = First[t];<br>   Dinv = Inverse[D];<br>   (*Update*)<br>   H = Last[t]; x = x.Dinv; A = D.A; B = B.Dinv;<br>   For[iter = 0, iter < $IterationLimit, ++iter,<br>    (* Step One *)<br>    r = MaxIndex[MapIndexed[\[Gamma]^First[#2] Abs[#1] &, Tr[H, List]]];<br>    If[r < n - 1, \[Alpha] = H[[r, r]]; \[Beta] = <br>      H[[r + 1, r]]; \[Lambda] = H[[r + 1, r + 1]]; \[Delta] = <br>      Sqrt[\[Beta]^2 + \[Lambda]^2]];<br>    R = IdentityMatrix[n]; t = R[[r]]; R[[r]] = R[[r + 1]]; <br>    R[[r + 1]] = t;<br>    x = x.R; H = R.H; A = R.A; B = B.R;<br>    (* Step Two *)<br>    If[r < n - 1,<br>     H = H.Table[<br>        Which[<br>         i == r && j == r, \[Beta]/\[Delta],<br>         i == r && j == r + 1, -\[Lambda]/\[Delta],<br>         i == r + 1 && j == r, \[Lambda]/\[Delta],<br>         i == r + 1 && j == r + 1, \[Beta]/\[Delta],<br>         i == j && j != r || i == j && j != r + 1, 1,<br>         True, 0],<br>        {i, 1, n - 1}, {j, 1, n - 1}]<br>     ];<br>    (* Step Three *)<br>    t = HermiteReduce[H];<br>    D = First[t];<br>    Dinv = Inverse[D];<br>    (*Update*)<br>    H = Last[t]; x = x.Dinv; A = D.A; B = B.Dinv;<br>    (* Step Four *)<br>    If[Min[Abs[Union[x, Tr[H, List]]]] <= 10^(-prec + 5), Break[]]<br>    ];(*Main Iteraton*)<br>   Return[Transpose[B][[MaxIndex[-Abs[x]]]]]<br>   ]<br>
 +
 +
 
 +
 +
Then find a relation.
 +
 +
 
 +
 +
#   <br> Clear[a]<br> f[x_] := x^3 + x - 1<br> Solve[f[x] == 0, x]<br> N[%]<br> a := -(2/(3 (9 + Sqrt[93])))^(1/3) + (1/2 (9 + Sqrt[93]))^(1/3)/3^(2/3)<br> N[a, 20]<br> L[x_] := PolyLog[2, x] + 1/2 Log[x] Log[1 - x]<br> S := {Pi^2/6,L[a], L[a^2], L[a^3], L[a^4], L[a^5], L[a^6]}<br> N[S, 100]<br> PSLQ[N[S, 100], 1000]<br>
 +
#  N[N[S, 50].%, 50]<br>
 +
 +
 
 +
 +
 
 +
 +
I found 
 +
 +
<math>-2L(1)+2L(\alpha)+2L(\alpha^{2})-L(\alpha^{4})=0</math> or
 +
 +
<math>2L(\alpha)+2L(\alpha^{2})-L(\alpha^{4})=\frac{\pi^2}{3}</math><br>
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">history</h5>
 +
 +
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">related items</h5>
 +
 +
* [[PSLQ algorithm]]<br>
 +
* [[Slater 34]]<br>
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">encyclopedia</h5>
 +
 +
* http://en.wikipedia.org/wiki/
 +
* http://www.scholarpedia.org/
 +
* http://www.proofwiki.org/wiki/
 +
* Princeton companion to mathematics([[2910610/attachments/2250873|Companion_to_Mathematics.pdf]])
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">books</h5>
 +
 +
 
 +
 +
* [[2010년 books and articles]]<br>
 +
* http://gigapedia.info/1/
 +
* http://gigapedia.info/1/
 +
* http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 +
 +
[[4909919|]]
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">articles</h5>
 +
 +
 
 +
 +
* http://www.ams.org/mathscinet
 +
* [http://www.zentralblatt-math.org/zmath/en/ ]http://www.zentralblatt-math.org/zmath/en/
 +
* http://arxiv.org/
 +
* http://www.pdf-search.org/
 +
* http://pythagoras0.springnote.com/
 +
* http://math.berkeley.edu/~reb/papers/index.html
 +
* http://dx.doi.org/
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">question and answers(Math Overflow)</h5>
 +
 +
* http://mathoverflow.net/search?q=
 +
* http://mathoverflow.net/search?q=
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">blogs</h5>
 +
 +
*  구글 블로그 검색<br>
 +
**  http://blogsearch.google.com/blogsearch?q=<br>
 +
** http://blogsearch.google.com/blogsearch?q=
 +
* http://ncatlab.org/nlab/show/HomePage
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">experts on the field</h5>
 +
 +
* http://arxiv.org/
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">links</h5>
 +
 +
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 +
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내]
 +
* [http://www.research.att.com/~njas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 +
* http://functions.wolfram.com/

2010년 8월 9일 (월) 20:12 판

introduction

 

 

Implement the PSLQ algorithm first.

 

  1.  
    PSLQ[inx_List, prec_] :=
     Block[
      {
       x,
       n = Length[inx],
       \[Gamma] = 2/Sqrt[3],
       A, B, H, D, Dinv, t, i, j, k, l, iter,
       \[Alpha], \[Beta], \[Lambda], \[Delta], r, R
       },
      (*Initialize*)
      x = N[inx /Sqrt[inx . inx], prec];
      s = Sqrt[MapIndexed[Plus @@ Drop[x^2, First[#2] - 1] &, x]];
      A = B = IdentityMatrix[n];
      H = Table[Which[
         i > j, (-xi*xj)/(sj*sj + 1),
         i == j, si + 1/si,
         i < j, 0
         ], {i, 1, n}, {j, 1, n - 1}];
      (* Reduce H *)
      t = HermiteReduce[H];
      D = First[t];
      Dinv = Inverse[D];
      (*Update*)
      H = Last[t]; x = x.Dinv; A = D.A; B = B.Dinv;
      For[iter = 0, iter < $IterationLimit, ++iter,
       (* Step One *)
       r = MaxIndex[MapIndexed[\[Gamma]^First[#2] Abs[#1] &, Tr[H, List]]];
       If[r < n - 1, \[Alpha] = Hr, r; \[Beta] = 
         Hr + 1, r; \[Lambda] = Hr + 1, r + 1; \[Delta] = 
         Sqrt[\[Beta]^2 + \[Lambda]^2]];
       R = IdentityMatrix[n]; t = Rr; Rr = Rr + 1
       Rr + 1 = t;
       x = x.R; H = R.H; A = R.A; B = B.R;
       (* Step Two *)
       If[r < n - 1,
        H = H.Table[
           Which[
            i == r && j == r, \[Beta]/\[Delta],
            i == r && j == r + 1, -\[Lambda]/\[Delta],
            i == r + 1 && j == r, \[Lambda]/\[Delta],
            i == r + 1 && j == r + 1, \[Beta]/\[Delta],
            i == j && j != r || i == j && j != r + 1, 1,
            True, 0],
           {i, 1, n - 1}, {j, 1, n - 1}]
        ];
       (* Step Three *)
       t = HermiteReduce[H];
       D = First[t];
       Dinv = Inverse[D];
       (*Update*)
       H = Last[t]; x = x.Dinv; A = D.A; B = B.Dinv;
       (* Step Four *)
       If[Min[Abs[Union[x, Tr[H, List]]]] <= 10^(-prec + 5), Break[]]
       ];(*Main Iteraton*)
      Return[Transpose[B][[MaxIndex[-Abs[x]]]]]
      ]

 

Then find a relation.

 

  1.  
    Clear[a]
    f[x_] := x^3 + x - 1
    Solve[f[x] == 0, x]
    N[%]
    a := -(2/(3 (9 + Sqrt[93])))^(1/3) + (1/2 (9 + Sqrt[93]))^(1/3)/3^(2/3)
    N[a, 20]
    L[x_] := PolyLog[2, x] + 1/2 Log[x] Log[1 - x]
    S := {Pi^2/6,L[a], L[a^2], L[a^3], L[a^4], L[a^5], L[a^6]}
    N[S, 100]
    PSLQ[N[S, 100], 1000]
  2. N[N[S, 50].%, 50]

 

 

I found 

\(-2L(1)+2L(\alpha)+2L(\alpha^{2})-L(\alpha^{4})=0\) or

\(2L(\alpha)+2L(\alpha^{2})-L(\alpha^{4})=\frac{\pi^2}{3}\)

 

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

[[4909919|]]

 

 

articles

 

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links