"Yang-Mills Theory(Non-Abelian gauge theory)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
76번째 줄: | 76번째 줄: | ||
* Baez and Muniain (“Knots, Gauge Fields and Gravity”, World Scientific 1994 | * Baez and Muniain (“Knots, Gauge Fields and Gravity”, World Scientific 1994 | ||
* M. Nakahara “Geometry, Topology and Physics”. | * M. Nakahara “Geometry, Topology and Physics”. | ||
+ | * Fifty years of Yang-Mills theory http://books.google.com/books?id=WV57GpYjYREC&pg=PA102&lpg=PA102&dq=weakly+interacting+boson+yang-mills&source=bl&ots=ztMiD8nOgz&sig=nhFiCtCQw2lAodU1zacqg3wueUQ&hl=ko&ei=W1jZTtuZCIqRiALR3c26BA&sa=X&oi=book_result&ct=result&resnum=10&ved=0CHEQ6AEwCQ#v=onepage&q&f=false | ||
* [[2009년 books and articles|찾아볼 수학책]] | * [[2009년 books and articles|찾아볼 수학책]] | ||
* http://gigapedia.info/1/ | * http://gigapedia.info/1/ | ||
104번째 줄: | 105번째 줄: | ||
* [http://www.jstor.org/stable/2324574 What Is Geometry?]<br> | * [http://www.jstor.org/stable/2324574 What Is Geometry?]<br> | ||
** Shiing-Shen Chern, <cite style="line-height: 2em;">The American Mathematical Monthly</cite>, Vol. 97, No. 8, Special Geometry Issue (Oct., 1990), pp. 679-686 | ** Shiing-Shen Chern, <cite style="line-height: 2em;">The American Mathematical Monthly</cite>, Vol. 97, No. 8, Special Geometry Issue (Oct., 1990), pp. 679-686 | ||
+ | * C. N. Yang and R. L. Mills, [http://dx.doi.org/10.1103/PhysRev.96.191 Conservation of Isotopic Spin and Isotopic Gauge Invariance], Phys. Rev. '''96''', 191 - 195 (1954) | ||
2011년 12월 3일 (토) 10:02 판
introduction
- This is not a quantum theory.
- This can be regarded as a generalization of electromagetics., i.e. bundle + connections
- looks like the coordinate invariance of gravity theory
- Gauge theory
- Usually, non-abelian gauge theory is called the YM theory.
- QCD is one example.
basic concepts
- connection
- curvature
original Yang-Mills model
- three kinds of photon
- one ordinary photon
- two electrically charged photons with spin 1 which is physically impossible to exist
- massless gauge fields
- for example, electromagnetic field(the only example at that time)
weak force
recipe
- prepare Dirac fields
- start with the free Dirac Lagrangian
- we demand the Lagrangian to be invariant under the SU(N) local gauge transformations
- structure constants are needed
- self-interaction of gauge fields starts to appear
Yang-Mills potential
- dual role
- a field in space-time
- operator in the isotopic-spin space
quantization of Yang-Mills theory
- We want to quantize this theory.
- standard model is a quantized version of a Yang-Mills theory of classical fields
books
- Baez and Muniain (“Knots, Gauge Fields and Gravity”, World Scientific 1994
- M. Nakahara “Geometry, Topology and Physics”.
- Fifty years of Yang-Mills theory http://books.google.com/books?id=WV57GpYjYREC&pg=PA102&lpg=PA102&dq=weakly+interacting+boson+yang-mills&source=bl&ots=ztMiD8nOgz&sig=nhFiCtCQw2lAodU1zacqg3wueUQ&hl=ko&ei=W1jZTtuZCIqRiALR3c26BA&sa=X&oi=book_result&ct=result&resnum=10&ved=0CHEQ6AEwCQ#v=onepage&q&f=false
- 찾아볼 수학책
- http://gigapedia.info/1/
- http://gigapedia.info/1/
expository
- Gauge Theory in Two Dimensions: Topological, Geometric and Probabilistic Aspects Ambar N. Sengupta
- Introduction to Yang-Mills theories
- http://michaelnielsen.org/blog/yang_mills.pdf
- History of Yang-Mills theory and wishful thinking
- The Reference Frame
- Overview of the links between the Langlands program and 4D super Yang-Mills
- http://online.kitp.ucsb.edu/online/duallang_m10/frenkel/rm/flashtv.html
- Electromagnetic duality for children
articles
- Yang-Mills Theory and Geometry
- Donaldson
- What Is Geometry?
- Shiing-Shen Chern, The American Mathematical Monthly, Vol. 97, No. 8, Special Geometry Issue (Oct., 1990), pp. 679-686
- C. N. Yang and R. L. Mills, Conservation of Isotopic Spin and Isotopic Gauge Invariance, Phys. Rev. 96, 191 - 195 (1954)
encyclopedia
- http://en.wikipedia.org/wiki/Yang-Mills_theory
- http://en.wikipedia.org/wiki/Gauge_theory
- http://www.physics.thetangentbundle.net/wiki/Quantum_field_theory/Yang-Mills_theory
블로그
- 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
- 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=