"Hubbard model"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (찾아 바꾸기 – “* Princeton companion to mathematics(Companion_to_Mathematics.pdf)” 문자열을 “” 문자열로)
imported>Pythagoras0
2번째 줄: 2번째 줄:
  
 
* The Hubbard model describes hopping electrons on a lattice
 
* The Hubbard model describes hopping electrons on a lattice
*  1968 Lieb and We<br>
+
*  1968 Lieb and We
 
** application of Bethe ansatz
 
** application of Bethe ansatz
*  1972 Takahasi<br>
+
*  1972 Takahasi
 
** string hypothesis
 
** string hypothesis
 
** replace the Lieb-Wu equations by simpler ones
 
** replace the Lieb-Wu equations by simpler ones
10번째 줄: 10번째 줄:
 
* algebraic Bethe ansatz for the Hubbard model
 
* algebraic Bethe ansatz for the Hubbard model
  
 
+
  
 
+
  
 
==Lieb-Wu equations==
 
==Lieb-Wu equations==
 +
*  describing Eigenstates of the Hubbard Hamiltonian
 +
* [[Bethe ansatz]] equation
 +
:<math>\exp(ik_jL)=\prod_{l=1}^{M}\frac{\lambda_{l}-\sin k_j-i u}{\lambda_{l}-\sin k_j+i u},\,j=1,\cdots, N</math>
 +
:<math>\prod_{j=1}^{N}\frac{\lambda_{l}-\sin k_j-i u}{\lambda_{l}-\sin k_j+i u}=\prod_{m=1,m\neq l}^{M}\frac{\lambda_{l}-\lambda_{m}-2i u}{\lambda_{l}-\lambda_{m}+2i u},\,l=1,\cdots, M</math>
  
* describing Eigenstates of the Hubbard Hamiltonian<br><math>\exp(ik_jL)=\prod_{l=1}^{M}\frac{\lambda_{l}-\sin k_j-i u}{\lambda_{l}-\sin k_j+i u}</math>, <math>j=1,\cdots, N</math><br><math>\prod_{j=1}^{N}\frac{\lambda_{l}-\sin k_j-i u}{\lambda_{l}-\sin k_j+i u}=\prod_{m=1,m\neq l}^{M}\frac{\lambda_{l}-\lambda_{m}-2i u}{\lambda_{l}-\lambda_{m}+2i u}</math>, <math>l=1,\cdots, M</math><br>
+
   
  
 
+
  
 
+
 
 
 
 
  
 
==string hypothesis==
 
==string hypothesis==
  
 
+
  
 
+
  
 
+
  
 
==history==
 
==history==
36번째 줄: 38번째 줄:
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
  
 
+
  
 
+
  
 
==related items==
 
==related items==
 +
* [[Bethe ansatz]]
  
*  
+
 
 
 
 
  
 
==encyclopedia==
 
==encyclopedia==
  
 
* http://en.wikipedia.org/wiki/Hubbard_model
 
* http://en.wikipedia.org/wiki/Hubbard_model
* http://en.wikipedia.org/wiki/
 
* http://www.scholarpedia.org/
 
  
 
+
 
 
 
 
 
 
  
 
==books==
 
==books==
 
 
* [http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521802628 The One-Dimensional Hubbard Model]
 
* [http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521802628 The One-Dimensional Hubbard Model]
* [[2010년 books and articles]]<br>
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
  
 
 
  
 
 
  
 
==articles==
 
==articles==
  
* [http://dx.doi.org/10.1143/JPSJ.56.1340 Lax Pair for the One-Dimensional Hubbard Model]<br>
+
* Miki Wadati, Eugenio Olmedilla and Yasuhiro Akutsu[http://dx.doi.org/10.1143/JPSJ.56.1340 Lax Pair for the One-Dimensional Hubbard Model], 1986
**  Miki Wadati, Eugenio Olmedilla and Yasuhiro Akutsu, 1986<br>
 
* http://www.ams.org/mathscinet
 
* http://www.zentralblatt-math.org/zmath/en/
 
* http://arxiv.org/
 
* http://pythagoras0.springnote.com/
 
* [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html]
 
* http://dx.doi.org/10.1143/JPSJ.56.1340
 
 
 
 
 
 
 
 
 
 
 
==question and answers(Math Overflow)==
 
 
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
 
 
 
 
 
 
 
 
 
 
 
==blogs==
 
 
 
*  구글 블로그 검색<br>
 
** http://blogsearch.google.com/blogsearch?q=
 
** http://blogsearch.google.com/blogsearch?q=
 
 
 
 
 
 
 
 
 
 
 
==experts on the field==
 
 
 
* http://arxiv.org/
 
 
 
 
 
 
 
 
 
 
 
==links==
 
  
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://pythagoras0.springnote.com/pages/1947378 수식표 현 안내]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
* http://functions.wolfram.com/
 
 
[[분류:integrable systems]]
 
[[분류:integrable systems]]
 
[[분류:math and physics]]
 
[[분류:math and physics]]
 
[[분류:math and physics]]
 
[[분류:math and physics]]

2013년 6월 28일 (금) 05:08 판

introduction

  • The Hubbard model describes hopping electrons on a lattice
  • 1968 Lieb and We
    • application of Bethe ansatz
  • 1972 Takahasi
    • string hypothesis
    • replace the Lieb-Wu equations by simpler ones
    • proceeded to drive a set of non-linear integral equations known as thermodynamic Bethe ansatz equations
  • algebraic Bethe ansatz for the Hubbard model



Lieb-Wu equations

  • describing Eigenstates of the Hubbard Hamiltonian
  • Bethe ansatz equation

\[\exp(ik_jL)=\prod_{l=1}^{M}\frac{\lambda_{l}-\sin k_j-i u}{\lambda_{l}-\sin k_j+i u},\,j=1,\cdots, N\] \[\prod_{j=1}^{N}\frac{\lambda_{l}-\sin k_j-i u}{\lambda_{l}-\sin k_j+i u}=\prod_{m=1,m\neq l}^{M}\frac{\lambda_{l}-\lambda_{m}-2i u}{\lambda_{l}-\lambda_{m}+2i u},\,l=1,\cdots, M\]




string hypothesis

history



related items


encyclopedia


books


articles