"BRST quantization and cohomology"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
23번째 줄: 23번째 줄:
 
 
 
 
  
[[#]]
+
 
  
 
 
 
 
52번째 줄: 52번째 줄:
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia</h5>
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia</h5>
  
* http://ko.wikipedia.org/wiki/
+
* http://en.wikipedia.org/wiki/BRST_quantization
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
 
* Princeton companion to mathematics([[2910610/attachments/2250873|Companion_to_Mathematics.pdf]])
 
* Princeton companion to mathematics([[2910610/attachments/2250873|Companion_to_Mathematics.pdf]])
  
61번째 줄: 58번째 줄:
  
 
[http://bomber0.byus.net/ ]
 
[http://bomber0.byus.net/ ]
 +
 +
 
 +
 +
 
 +
 +
<h5 style="margin: 0px; line-height: 2em;">expositions</h5>
 +
 +
* [http://www.math.sciences.univ-nantes.fr/%7Ewagemann/LAlecture.pdf Introduction to Lie algebra cohomology with a view towards BRST cohomology]<br>
 +
**  Friedrich Wagemann, 2010-8<br>
 +
 +
 
 +
 +
 
 +
 +
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5>
 +
 +
* BRST cohomology in classical mechanics 10.1007/BF01466770
 +
*  Symplectic Reduction, BRS Cohomology, and Infinite-Dimensional Clifford algebras<br>
 +
** B. Kostant, S. Sternberg, Ann. Physics 176 (1987) 49–113
 +
* [http://www.pnas.org/content/83/22/8442.abstract Semi-infinite cohomology and string theory]<br>
 +
** I. B. Frenkel,. H. Garland, and. G. J. Zuckerman, PNAS November 1, 1986 vol. 83 no. 22 8442-8446
 +
 +
 
  
 
 
 
 
80번째 줄: 100번째 줄:
  
 
 
 
 
 
<h5 style="margin: 0px; line-height: 2em;">expositions</h5>
 
 
* [http://www.math.sciences.univ-nantes.fr/%7Ewagemann/LAlecture.pdf Introduction to Lie algebra cohomology with a view towards BRST cohomology]<br>
 
**  Friedrich Wagemann, 2010-8<br>
 
  
 
 
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5>
 
 
*  Symplectic Reduction, BRS Cohomology, and Infinite-Dimensional Clifford algebras<br>
 
** B. Kostant, S. Sternberg, Ann. Physics 176 (1987) 49–113
 
* [http://www.pnas.org/content/83/22/8442.abstract Semi-infinite cohomology and string theory]<br>
 
** I. B. Frenkel,. H. Garland, and. G. J. Zuckerman, PNAS November 1, 1986 vol. 83 no. 22 8442-8446
 
* [[2010년 books and articles|논문정리]]
 
* http://www.ams.org/mathscinet/search/publications.html?pg4=ALLF&s4=
 
* http://www.zentralblatt-math.org/zmath/en/
 
* http://pythagoras0.springnote.com/
 
* [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html]
 
 
* http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
 
* http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
 
  
 
 
 
 
  
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">TeX </h5>
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">TeX </h5>

2010년 11월 14일 (일) 08:03 판

introduction
  • Gauge theory = principal G-bundle
  • We require a quantization of gauge theory.
  • BRST quantization is one way to quantize the theory and is a part of path integral.
  • Gauge theory allows 'local symmetry' which should be ignored to be physical. 
  • This ignoring process leads to the cohomoloy theory.
  • BRST = quantization procedure of a classical system with constraints by introducing odd variables (“ghosts”)
  • the conditions D = 26 and α0 = 1 for the space-time dimension D and the zero-intercept α0 of leading trajectory are required by the nilpotency QB2 = 0 of the BRS charge

 

 

\Lambda_{\infty} semi-infinite form

\mathfrak{g} : \mathbb{Z}-graded Lie algebra

\sigma : anti-linear automorphism sending \mathfrak{g}_{n} to \mathfrak{g}_{-n}

H^2(\mathfrak{g})=0 (i.e. no non-trivial central extension)

 

 

 

related items

 

 

books

 

 

encyclopedia

 

[1]

 

 

expositions

 

 

articles
  • BRST cohomology in classical mechanics 10.1007/BF01466770
  • Symplectic Reduction, BRS Cohomology, and Infinite-Dimensional Clifford algebras
    • B. Kostant, S. Sternberg, Ann. Physics 176 (1987) 49–113
  • Semi-infinite cohomology and string theory
    • I. B. Frenkel,. H. Garland, and. G. J. Zuckerman, PNAS November 1, 1986 vol. 83 no. 22 8442-8446

 

 

blogs

 

 

 

TeX