"BRST quantization and cohomology"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
14번째 줄: 14번째 줄:
 
 
 
 
  
<math>\Lambda_{\infty}</math> semi-infinite form
+
* <math>\Lambda_{\infty}</math> semi-infinite form<br>
 
+
* <math>\mathfrak{g}</math> : <math>\mathbb{Z}</math>-graded Lie algebra<br>
<math>\mathfrak{g}</math> : <math>\mathbb{Z}</math>-graded Lie algebra
+
* <math>\sigma</math> : anti-linear automorphism sending <math>\mathfrak{g}_{n}</math> to <math>\mathfrak{g}_{-n}</math><br>
 
+
* <math>H^2(\mathfrak{g})=0</math> (i.e. no non-trivial central extension)<br>
<math>\sigma</math> : anti-linear automorphism sending \mathfrak{g}_{n} to \mathfrak{g}_{-n}
 
 
 
H^2(\mathfrak{g})=0 (i.e. no non-trivial central extension)
 
 
 
 
 
 
 
 
 
  
 
 
 
 

2011년 10월 4일 (화) 07:39 판

introduction
  • PG minicourse: BRST cohomology (http://empg.maths.ed.ac.uk/Activities/BRST/Notes.pdf , very good introduction)
  • Gauge theory = principal G-bundle
  • We require a quantization of gauge theory
  • BRST quantization is one way to quantize the theory and is a part of path integral
  • Gauge theory allows 'local symmetry' which should be ignored to be physical
  • this ignoring process leads to the cohomoloy theory.
  • BRST = quantization procedure of a classical system with constraints by introducing odd variables (“ghosts”)
  • the conditions D = 26 and α0 = 1 for the space-time dimension D and the zero-intercept α0 of leading trajectory are required by the nilpotency QB2 = 0 of the BRS charge

 

 

  • \(\Lambda_{\infty}\) semi-infinite form
  • \(\mathfrak{g}\) \[\mathbb{Z}\]-graded Lie algebra
  • \(\sigma\) : anti-linear automorphism sending \(\mathfrak{g}_{n}\) to \(\mathfrak{g}_{-n}\)
  • \(H^2(\mathfrak{g})=0\) (i.e. no non-trivial central extension)

 

 

 

ghost variables

 

 

 

nilpotency of BRST operator

 

 

applications
  • BRST approach to minimal models
  • BRST approach to no-ghost theorem
  • BRST approach to coset constructions

 

 

 

related items

 

 

books

 

 

encyclopedia

 

[1]

 

 

expositions

 

 

articles

 

blogs

 

 

 

TeX