"BRST quantization and cohomology"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지의 이름을 BRST quantization and cohomology로 바꾸었습니다.)
1번째 줄: 1번째 줄:
<h5>introduction</h5>
+
<h5>introduction[http://empg.maths.ed.ac.uk/Activities/BRST/ ]</h5>
  
* [http://empg.maths.ed.ac.uk/Activities/BRST/ PG minicourse: BRST cohomology] (http://empg.maths.ed.ac.uk/Activities/BRST/Notes.pdf , very good introduction)<br>
 
 
* [[Gauge theory]] = principal G-bundle<br>
 
* [[Gauge theory]] = principal G-bundle<br>
 
*  We require a quantization of gauge theory<br>
 
*  We require a quantization of gauge theory<br>
 
*  BRST quantization is one way to quantize the theory and is a part of path integral<br>
 
*  BRST quantization is one way to quantize the theory and is a part of path integral<br>
*  Gauge theory allows 'local symmetry' which should be ignored to be physical<br>
+
**  Gauge theory allows 'local symmetry' which should be ignored to be physical<br>
*  this ignoring process leads to the cohomoloy theory.<br>
+
**  this ignoring process leads to the cohomoloy theory.<br>
 
*  BRST = quantization procedure of a classical system with constraints by introducing odd variables (“ghosts”)<br>
 
*  BRST = quantization procedure of a classical system with constraints by introducing odd variables (“ghosts”)<br>
 +
*  re-packaging of Faddeev-Popov quantization<br>
 
*  the conditions D = 26 and α0 = 1 for the space-time dimension D and the zero-intercept α0 of leading trajectory are required by the nilpotency QB2 = 0 of the BRS charge<br>
 
*  the conditions D = 26 and α0 = 1 for the space-time dimension D and the zero-intercept α0 of leading trajectory are required by the nilpotency QB2 = 0 of the BRS charge<br>
  
14번째 줄: 14번째 줄:
 
 
 
 
  
* <math>\Lambda_{\infty}</math> semi-infinite form<br>
+
<h5 style="margin: 0px; line-height: 2em;">ghost variables</h5>
* <math>\mathfrak{g}</math> : <math>\mathbb{Z}</math>-graded Lie algebra<br>
+
 
* <math>\sigma</math> : anti-linear automorphism sending <math>\mathfrak{g}_{n}</math> to <math>\mathfrak{g}_{-n}</math><br>
+
* [[Faddeev–Popov ghost fields|ghost fields]]<br>
* <math>H^2(\mathfrak{g})=0</math> (i.e. no non-trivial central extension)<br>
+
 
 +
 
 +
 
 +
 
  
 
 
 
 
25번째 줄: 28번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;">ghost variables</h5>
+
<h5 style="margin: 0px; line-height: 2em;">nilpotency of BRST operator</h5>
  
* [[Faddeev–Popov ghost fields|ghost fields]]<br>
+
* [http://bolvan.ph.utexas.edu/%7Evadim/Classes/2008f.homeworks/brst.pdf http://bolvan.ph.utexas.edu/~vadim/Classes/2008f.homeworks/brst.pdf]<br>
 +
* [http://www.nuclecu.unam.mx/%7Echryss/papers/brst_final.pdf http://www.nuclecu.unam.mx/~chryss/papers/brst_final.pdf]<br>
  
 
 
 
 
35번째 줄: 39번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;">nilpotency of BRST operator</h5>
+
<h5 style="margin: 0px; line-height: 2em;">BRST cohomology</h5>
 +
 
 +
* <math>\Lambda_{\infty}</math> semi-infinite form<br>
 +
* <math>\mathfrak{g}</math> : <math>\mathbb{Z}</math>-graded Lie algebra<br>
 +
* <math>\sigma</math> : anti-linear automorphism sending <math>\mathfrak{g}_{n}</math> to <math>\mathfrak{g}_{-n}</math><br>
 +
* <math>H^2(\mathfrak{g})=0</math> (i.e. no non-trivial central extension)<br>
  
* [http://bolvan.ph.utexas.edu/%7Evadim/Classes/2008f.homeworks/brst.pdf http://bolvan.ph.utexas.edu/~vadim/Classes/2008f.homeworks/brst.pdf]<br>
+
 
* [http://www.nuclecu.unam.mx/%7Echryss/papers/brst_final.pdf http://www.nuclecu.unam.mx/~chryss/papers/brst_final.pdf]<br>
 
  
 
 
 
 
68번째 줄: 76번째 줄:
  
 
*   <br>
 
*   <br>
* [[2009년 books and articles|찾아볼 수학책]]
+
* Polchinski, vol. I. $3.1-3.4, 4.2-4.3
 +
* GSW, I. 3.1-3.2
  
 
 
 
 

2011년 10월 4일 (화) 07:48 판

introduction[1]
  • Gauge theory = principal G-bundle
  • We require a quantization of gauge theory
  • BRST quantization is one way to quantize the theory and is a part of path integral
    • Gauge theory allows 'local symmetry' which should be ignored to be physical
    • this ignoring process leads to the cohomoloy theory.
  • BRST = quantization procedure of a classical system with constraints by introducing odd variables (“ghosts”)
  • re-packaging of Faddeev-Popov quantization
  • the conditions D = 26 and α0 = 1 for the space-time dimension D and the zero-intercept α0 of leading trajectory are required by the nilpotency QB2 = 0 of the BRS charge

 

 

ghost variables

 

 

 

 

 

nilpotency of BRST operator

 

 

 

BRST cohomology
  • \(\Lambda_{\infty}\) semi-infinite form
  • \(\mathfrak{g}\) \[\mathbb{Z}\]-graded Lie algebra
  • \(\sigma\) : anti-linear automorphism sending \(\mathfrak{g}_{n}\) to \(\mathfrak{g}_{-n}\)
  • \(H^2(\mathfrak{g})=0\) (i.e. no non-trivial central extension)

 

 

 

applications
  • BRST approach to minimal models
  • BRST approach to no-ghost theorem
  • BRST approach to coset constructions

 

 

 

related items

 

 

books
  •  
  • Polchinski, vol. I. $3.1-3.4, 4.2-4.3
  • GSW, I. 3.1-3.2

 

 

encyclopedia

 

[2]

 

 

expositions

 

 

articles

 

blogs

 

 

 

TeX