"BRST quantization and cohomology"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
114번째 줄: 114번째 줄:
 
* [http://www.math.sciences.univ-nantes.fr/%7Ewagemann/LAlecture.pdf Introduction to Lie algebra cohomology with a view towards BRST cohomology] ,Friedrich Wagemann, 2010-8<br>
 
* [http://www.math.sciences.univ-nantes.fr/%7Ewagemann/LAlecture.pdf Introduction to Lie algebra cohomology with a view towards BRST cohomology] ,Friedrich Wagemann, 2010-8<br>
 
* [http://empg.maths.ed.ac.uk/Activities/BRST/ PG minicourse: BRST cohomology] (http://empg.maths.ed.ac.uk/Activities/BRST/Notes.pdf  José Figueroa-O’Farrill 2006<br>
 
* [http://empg.maths.ed.ac.uk/Activities/BRST/ PG minicourse: BRST cohomology] (http://empg.maths.ed.ac.uk/Activities/BRST/Notes.pdf  José Figueroa-O’Farrill 2006<br>
*  D'Hooker, E., Phong, D.H.: The geometry of string perturbation theory. Rev. Mod. Phys. 60,. 917-1065 (1988)<br>
+
*  D'Hooker, E., Phong, D.H.: [http://dx.doi.org/10.1103/RevModPhys.60.917 The geometry of string perturbation theory]. Rev. Mod. Phys. 60,. 917-1065 (1988)<br>
  
 
 
 
 
123번째 줄: 123번째 줄:
  
 
* Igor B. Frenkel, Anton M. Zeitlin, Quantum Group as Semi-infinite Cohomology
 
* Igor B. Frenkel, Anton M. Zeitlin, Quantum Group as Semi-infinite Cohomology
* van Holten, J. W., The BRST complex and the cohomology of compact lie algebras
+
* J.W., van Holten. 1990. “The BRST complex and the cohomology of compact lie algebras”. <em>Nuclear Physics B</em> 339 (1) (7월 23): 158-176. doi:10.1016/0550-3213(90)90537-N.
 
* D. Bernard and G. Felder, 1990, [http://dx.doi.org/10.1007/BF02096498 Fock representations and BRST cohomology inSL(2) current algebra]
 
* D. Bernard and G. Felder, 1990, [http://dx.doi.org/10.1007/BF02096498 Fock representations and BRST cohomology inSL(2) current algebra]
 
* [http://dx.doi.org/10.1007/BF01466770 BRST cohomology in classical mechanics]
 
* [http://dx.doi.org/10.1007/BF01466770 BRST cohomology in classical mechanics]
 
* Symplectic Reduction, BRS Cohomology, and Infinite-Dimensional Clifford algebras, B. Kostant, S. Sternberg, Ann. Physics 176 (1987) 49–113
 
* Symplectic Reduction, BRS Cohomology, and Infinite-Dimensional Clifford algebras, B. Kostant, S. Sternberg, Ann. Physics 176 (1987) 49–113
 
* I. B. Frenkel,. H. Garland, and. G. J. Zuckerman, PNAS November 1, 1986 vol. 83 no. 22 8442-8446, [http://www.pnas.org/content/83/22/8442.abstract Semi-infinite cohomology and string theory]
 
* I. B. Frenkel,. H. Garland, and. G. J. Zuckerman, PNAS November 1, 1986 vol. 83 no. 22 8442-8446, [http://www.pnas.org/content/83/22/8442.abstract Semi-infinite cohomology and string theory]
* http://dx.doi.org/10.1007/BF02096498
+
* http://dx.doi.org/10.1103/RevModPhys.60.917
  
 
 
 
 

2011년 10월 4일 (화) 07:17 판

introduction
  • Gauge theory = principal G-bundle
  • We require a quantization of gauge theory
  • BRST quantization is one way to quantize the theory and is a part of path integral
    • Gauge theory allows 'local symmetry' which should be ignored to be physical
    • this ignoring process leads to the cohomoloy theory.
  • BRST = quantization procedure of a classical system with constraints by introducing odd variables (“ghosts”)
  • re-packaging of Faddeev-Popov quantization
  • the conditions D = 26 and α0 = 1 for the space-time dimension D and the zero-intercept α0 of leading trajectory are required by the nilpotency QB2 = 0 of the BRS charge

 

 

gauge fixing

 

 

 

 

ghost variables

 

 

 

 

 

 

 

nilpotency of BRST operator

 

 

 

BRST cohomology
  • \(\Lambda_{\infty}\) semi-infinite form
  • \(\mathfrak{g}\) \[\mathbb{Z}\]-graded Lie algebra
  • \(\sigma\) : anti-linear automorphism sending \(\mathfrak{g}_{n}\) to \(\mathfrak{g}_{-n}\)
  • \(H^2(\mathfrak{g})=0\) (i.e. no non-trivial central extension)

 

 

 

applications
  • BRST approach to minimal models
  • BRST approach to no-ghost theorem
  • BRST approach to coset constructions

 

 

 

related items

 

 

books
  • Polchinski, vol. I. $3.1-3.4, 4.2-4.3
  • GSW, I. 3.1-3.2

 

 

encyclopedia

 

[1]

 

 

expositions

 

 

articles

 

blogs

 

 

 

TeX