"BRST quantization and cohomology"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
35번째 줄: 35번째 줄:
  
 
* [http://hitoshi.berkeley.edu/230A/FPghosts.pdf Faddeev-Popov ghosts], Hitoshi<br>
 
* [http://hitoshi.berkeley.edu/230A/FPghosts.pdf Faddeev-Popov ghosts], Hitoshi<br>
 +
 +
 
  
 
 
 
 
42번째 줄: 44번째 줄:
 
<h5 style="margin: 0px; line-height: 2em;">path integral and ghost sector</h5>
 
<h5 style="margin: 0px; line-height: 2em;">path integral and ghost sector</h5>
  
* <math>Z = \int\!\mathcal{D}X\,\mathcal{D}b \mathcal{D}c \,e^{-\int\left(\partial X \partial \bar{X} -b_{zz}\partial_{\bar{z}}c^{z}+b_{\bar{z}\bar{z}}\partial_{z}c^{\bar{z}}\right)}</math>
+
* <math>Z = \int\!\mathcal{D}X\,\mathcal{D}c \mathcal{D}b \mathcal{D}\bar{c} \mathcal{D}\bar{b} \,e^{-\int\left(\partial X \partial \bar{X} -b_{zz}\partial_{\bar{z}}c^{z}+b_{\bar{z}\bar{z}}\partial_{z}c^{\bar{z}}\right)}</math>
* DX : matter and DbDc : ghost sector
+
* <math>e^{S_1(X)+S_2(b,c,\bar{b},\bar{c},\cdots,X)</math>
 +
* DX : matter and Db : ghost Dc : antighost
 
* bc system of \epsilon=+1 (in [[Faddeev–Popov ghost fields]])
 
* bc system of \epsilon=+1 (in [[Faddeev–Popov ghost fields]])
 
* \lambda=2
 
* \lambda=2
57번째 줄: 60번째 줄:
 
<h5 style="margin: 0px; line-height: 2em;">nilpotency of BRST operator</h5>
 
<h5 style="margin: 0px; line-height: 2em;">nilpotency of BRST operator</h5>
  
 +
*  new, global symmetry (BRST)<br>
 +
*  Q is fermionic<br>
 
*  Q_{BRST}^2=0<br>
 
*  Q_{BRST}^2=0<br>
 
* [http://bolvan.ph.utexas.edu/%7Evadim/Classes/2008f.homeworks/brst.pdf http://bolvan.ph.utexas.edu/~vadim/Classes/2008f.homeworks/brst.pdf]<br>
 
* [http://bolvan.ph.utexas.edu/%7Evadim/Classes/2008f.homeworks/brst.pdf http://bolvan.ph.utexas.edu/~vadim/Classes/2008f.homeworks/brst.pdf]<br>

2011년 10월 8일 (토) 07:19 판

introduction
  • Gauge theory = principal G-bundle
  • We require a quantization of gauge theory
  • BRST quantization is one way to quantize the theory and is a part of path integral
    • Gauge theory allows 'local symmetry' which should be ignored to be physical
    • this ignoring process leads to the cohomoloy theory.
  • BRST = quantization procedure of a classical system with constraints by introducing odd variables (“ghosts”)
  • re-packaging of Faddeev-Popov quantization
  • the conditions D = 26 and α0 = 1 for the space-time dimension D and the zero-intercept α0 of leading trajectory are required by the nilpotency QB2 = 0 of the BRS charge

 

 

gauge fixing

 

 

 

ghost variables

 

 

 

Faddeev-Ghost determinant

 

 

 

path integral and ghost sector
  • \(Z = \int\!\mathcal{D}X\,\mathcal{D}c \mathcal{D}b \mathcal{D}\bar{c} \mathcal{D}\bar{b} \,e^{-\int\left(\partial X \partial \bar{X} -b_{zz}\partial_{\bar{z}}c^{z}+b_{\bar{z}\bar{z}}\partial_{z}c^{\bar{z}}\right)}\)
  • \(e^{S_1(X)+S_2(b,c,\bar{b},\bar{c},\cdots,X)\)
  • DX : matter and Db : ghost Dc : antighost
  • bc system of \epsilon=+1 (in Faddeev–Popov ghost fields)
  • \lambda=2
  • c_{b,c}=-26
  • [c]=-1,[b]=2

 

 

 

nilpotency of BRST operator

 

 

construction of Hilbert space of states
  • BRST charge acts on a huge space
  • Q.v =0 <=> physical condition
  • if the total central charge is not 0 but c, Q_{BRST}^2=c

 

 

 

BRST cohomology
  • \(\Lambda_{\infty}\) semi-infinite form
  • \(\mathfrak{g}\) \[\mathbb{Z}\]-graded Lie algebra
  • \(\sigma\) : anti-linear automorphism sending \(\mathfrak{g}_{n}\) to \(\mathfrak{g}_{-n}\)
  • \(H^2(\mathfrak{g})=0\) (i.e. no non-trivial central extension)

 

 

 

applications
  • BRST approach to minimal models
  • BRST approach to no-ghost theorem
  • BRST approach to coset constructions

 

 

 

related items

 

 

books
  • Polchinski, vol. I. $3.1-3.4, 4.2-4.3
  • GSW, I. 3.1-3.2

 

 

encyclopedia

 

[2]

 

 

expositions

 

 

articles

 

blogs

 

 

 

TeX