"Mirror symmetry"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
10번째 줄: | 10번째 줄: | ||
==related items== | ==related items== | ||
− | * [[ | + | * [[Calabi-Yau threefolds]] |
16번째 줄: | 16번째 줄: | ||
* http://www.kias.re.kr/file/NewsletterNo37.pdf | * http://www.kias.re.kr/file/NewsletterNo37.pdf | ||
* Lectures on Mirror Symmetry, Derived Categories, and D-branes<br> Authors: Anton Kapustin, Dmitri Orlov http://arxiv.org/abs/math/0308173 | * Lectures on Mirror Symmetry, Derived Categories, and D-branes<br> Authors: Anton Kapustin, Dmitri Orlov http://arxiv.org/abs/math/0308173 | ||
+ | * Yau, Shing-Tung, ed. 1992. Essays on Mirror Manifolds. Hong Kong: International Press. http://www.ams.org/mathscinet-getitem?mr=1191418. | ||
+ | |||
+ | |||
+ | ==articles== | ||
+ | * Candelas, Philip, Xenia C. de la Ossa, Paul S. Green, and Linda Parkes. 1991. “A Pair of Calabi-Yau Manifolds as an Exactly Soluble Superconformal Theory.” Nuclear Physics. B 359 (1): 21–74. doi:10.1016/0550-3213(91)90292-6. | ||
2013년 12월 26일 (목) 11:36 판
introduction
homological mirror symmetry
- 1994 Kontsevich
- categorical equivalence of the following two categories
- derived category of bounded complexes of coherent sheaves on a smooth, complete, algebraic variety $X$ over an algebraically closed field
- Fukaya category of the symplectic manifold $\tilde{X}$
exposition
- http://www.kias.re.kr/file/NewsletterNo37.pdf
- Lectures on Mirror Symmetry, Derived Categories, and D-branes
Authors: Anton Kapustin, Dmitri Orlov http://arxiv.org/abs/math/0308173 - Yau, Shing-Tung, ed. 1992. Essays on Mirror Manifolds. Hong Kong: International Press. http://www.ams.org/mathscinet-getitem?mr=1191418.
articles
- Candelas, Philip, Xenia C. de la Ossa, Paul S. Green, and Linda Parkes. 1991. “A Pair of Calabi-Yau Manifolds as an Exactly Soluble Superconformal Theory.” Nuclear Physics. B 359 (1): 21–74. doi:10.1016/0550-3213(91)90292-6.