"Mirror symmetry"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
10번째 줄: 10번째 줄:
  
 
==related items==
 
==related items==
* [[Dwork pencil of quintic threefolds]]
+
* [[Calabi-Yau threefolds]]
  
  
16번째 줄: 16번째 줄:
 
* http://www.kias.re.kr/file/NewsletterNo37.pdf
 
* http://www.kias.re.kr/file/NewsletterNo37.pdf
 
* Lectures on Mirror Symmetry, Derived Categories, and D-branes<br> Authors: Anton Kapustin, Dmitri Orlov http://arxiv.org/abs/math/0308173
 
* Lectures on Mirror Symmetry, Derived Categories, and D-branes<br> Authors: Anton Kapustin, Dmitri Orlov http://arxiv.org/abs/math/0308173
 +
* Yau, Shing-Tung, ed. 1992. Essays on Mirror Manifolds. Hong Kong: International Press. http://www.ams.org/mathscinet-getitem?mr=1191418.
 +
 +
 +
==articles==
 +
* Candelas, Philip, Xenia C. de la Ossa, Paul S. Green, and Linda Parkes. 1991. “A Pair of Calabi-Yau Manifolds as an Exactly Soluble Superconformal Theory.” Nuclear Physics. B 359 (1): 21–74. doi:10.1016/0550-3213(91)90292-6.
  
  

2013년 12월 26일 (목) 11:36 판

introduction

homological mirror symmetry

  • 1994 Kontsevich
  • categorical equivalence of the following two categories
    • derived category of bounded complexes of coherent sheaves on a smooth, complete, algebraic variety $X$ over an algebraically closed field
    • Fukaya category of the symplectic manifold $\tilde{X}$


related items


exposition


articles

  • Candelas, Philip, Xenia C. de la Ossa, Paul S. Green, and Linda Parkes. 1991. “A Pair of Calabi-Yau Manifolds as an Exactly Soluble Superconformal Theory.” Nuclear Physics. B 359 (1): 21–74. doi:10.1016/0550-3213(91)90292-6.


books