"3-states Potts model"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
77번째 줄: | 77번째 줄: | ||
[[분류:integrable systems]] | [[분류:integrable systems]] | ||
[[분류:math and physics]] | [[분류:math and physics]] | ||
+ | [[분류:migrate]] |
2020년 11월 13일 (금) 05:18 판
introduction
- 3-states Potts model = M(5,6) minimal model
- two modular invariant partition functions
- c=4/5, effective central charge=4/5
- having the Z_3 symmetry W_3 algebra (W-algebra)
ferromagnetic three-state Potts spin chain
- [DKMM93]
conformal field theory
\(m= 5, c = \frac{4}{5}\) \[h_{r,s}(c) = {((m+1)r-ms)^2-1 \over 4m(m+1)}\]\(r = 1, 2, 3,4\) and \(s= 1, 2, 3,\cdots, r\) i.e. \(1\leq s\leq r< 5\) ( or \(1\leq r< s\leq m\) condition is also used)
- 10 irreducible representations
- conformal dimensions
\[\Delta_{r,s}^{(p,p')}=h_{r,s}^{(p,p')}=\frac{(p'r-ps)^2-(p'-p)^2}{4pp'}\]\(1\leq r \leq p-1\) and \(1\leq s \leq p'-1\)
- note that \(\Delta_{r,s}^{(p,p')}=\Delta_{p-r,p'-s}^{(p,p')}\) r=1,2,3,4 s=1,2,3,4,5
- table of minimal models
- rank 2 case
- W-algebra
- Schramm–Loewner evolution (SLE)
- Ising models
- hard hexagon model
- eight-vertex model and quantum XYZ model
articles
- Schramm–Loewner evolution in the three-state Potts model—a numerical study
- Adam Gamsa and John Cardy J. Stat. Mech. (2007) P08020
- On thermodynamic approaches to conformal field theory
- Jose Gaite, Nuclear Physics B Volume 525, Issue 3, 17 August 1998, Pages 627-640
- Critical exponents of the chiral Potts model from conformal field theory
- John L. Cardy, 1993
- [DKMM93]Virasoro Characters from Bethe Equations for the Critical Ferromagnetic Three-State Potts Model
- Srinandan Dasmahapatra, Rinat Kedem, Barry M. McCoy and Ezer Melzer, 1933
- Thermodynamics of the 3-state Potts Spin chain
- Rinat Kedem, 1992
- Construction of Modular Branching Functions from Bethe’s Equations in the 3-State Potts Chain
- Rinat Kedem, Barry M. McCoy, 1992
- Thermodynamic Bethe ansatz in relativistic models: Scaling 3-state potts and Lee-Yang models
- Al. B. Zamolodchikov, 1990
- Integrals of Motion in Scaling 3-STATE Potts Model Field Theory.
- Zamolodchikov, A, Volume: 3, Issue: 3(1988) pp. 743-750
- Conformal quantum field theory models in two dimensions having Z3 symmetry
- V. A. Fateev and A. B. Zamolodchikov, Nuclear Phys. B 280 (1987), no. 4, 644–660
- Virasoro Algebra, von Neumann Algebra and Critical Eight-Vertex SOS Models
- Atsuo Kuniba, Yasuhiro Akutsu1 and Miki Wadati, 1986
- Critical behavior of the three-state Potts model: Monte Carlo renormalization group
- Phys. Rev. B 28, 3897–3903 (1983)
- Critical exponents of the three-state potts model
- Bambi Hu, 1980
- Hard hexagons: exact solution
- R J Baxter 1980 J. Phys. A: Math. Gen.