"Cartan decomposition of general linear groups"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
2번째 줄: 2번째 줄:
 
*  
 
*  
  
$
+
<math>
 
\newcommand{\pmat}[4]{\begin{pmatrix} #1 & #2 \\ #3 & #4\end{pmatrix}}
 
\newcommand{\pmat}[4]{\begin{pmatrix} #1 & #2 \\ #3 & #4\end{pmatrix}}
 
\def\GL#1{\mathrm{GL}_{#1}}
 
\def\GL#1{\mathrm{GL}_{#1}}
11번째 줄: 11번째 줄:
 
\newcommand{\HH}{\mathcal{H}}
 
\newcommand{\HH}{\mathcal{H}}
 
\newcommand{\fsph}{f_{\mathrm{sph}}}
 
\newcommand{\fsph}{f_{\mathrm{sph}}}
$
+
</math>
  
 
==application to Hecke operators==
 
==application to Hecke operators==
* Let $G = \GL2(\Qp)$ and $K = \GL2(\Zp)$
+
* Let <math>G = \GL2(\Qp)</math> and <math>K = \GL2(\Zp)</math>
* Cartan decomposition : $G = \bigcup_{(m,n)\in \Z^2 : m\geq n} K\pmat {p^m} 0 0  {p^n} K$
+
* Cartan decomposition : <math>G = \bigcup_{(m,n)\in \Z^2 : m\geq n} K\pmat {p^m} 0 0  {p^n} K</math>
* The Hecke operator $T_p\in \HH(G,K)$ is given by convolution with the characteristic function of $K\pmat p 0 0 1 K$
+
* The Hecke operator <math>T_p\in \HH(G,K)</math> is given by convolution with the characteristic function of <math>K\pmat p 0 0 1 K</math>
* Similarly, the operator $R_p$ is given by convolution with the characteristic function of $K \pmat p 0 0 p K$
+
* Similarly, the operator <math>R_p</math> is given by convolution with the characteristic function of <math>K \pmat p 0 0 p K</math>
* How $T_p$ and $R_p$ act?  
+
* How <math>T_p</math> and <math>R_p</math> act?  
* The double coset for $T_p$ decomposes as  
+
* The double coset for <math>T_p</math> decomposes as  
 
\[
 
\[
 
K \pmat p 0 0 1 K =  
 
K \pmat p 0 0 1 K =  
44번째 줄: 44번째 줄:
 
\]
 
\]
  
* The double coset for $R_p$ is the single coset $\pmat p 0 0 p K$, so  
+
* The double coset for <math>R_p</math> is the single coset <math>\pmat p 0 0 p K</math>, so  
 
\[
 
\[
 
\begin{aligned}
 
\begin{aligned}

2020년 9월 23일 (수) 20:35 판

introduction

\( \newcommand{\pmat}[4]{\begin{pmatrix} #1 & #2 \\ #3 & #4\end{pmatrix}} \def\GL#1{\mathrm{GL}_{#1}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\Qp}{\Q_p} \newcommand{\Zp}{\Z_p} \newcommand{\HH}{\mathcal{H}} \newcommand{\fsph}{f_{\mathrm{sph}}} \)

application to Hecke operators

  • Let \(G = \GL2(\Qp)\) and \(K = \GL2(\Zp)\)
  • Cartan decomposition \[G = \bigcup_{(m,n)\in \Z^2 : m\geq n} K\pmat {p^m} 0 0 {p^n} K\]
  • The Hecke operator \(T_p\in \HH(G,K)\) is given by convolution with the characteristic function of \(K\pmat p 0 0 1 K\)
  • Similarly, the operator \(R_p\) is given by convolution with the characteristic function of \(K \pmat p 0 0 p K\)
  • How \(T_p\) and \(R_p\) act?
  • The double coset for \(T_p\) decomposes as

\[ K \pmat p 0 0 1 K = \bigcup_{b=0}^{p-1} \pmat p b 0 1 K \bigcup \pmat 1 0 0 p K . \]

  • Hence

\[ \begin{aligned} (T_p \fsph)(1) & = \int_{K}\sum_{b}^{p-1} \fsph\left(\pmat p b 0 1 g \right)+ \fsph\left(\pmat 1 0 0 p g \right)\, dg \\ & = \fsph\left(\pmat p b 0 1 g \right)+ \fsph\left(\pmat 1 0 0 p g \right) \\ & = p \chi_1(p)|p|^{1/2}+p \chi_2(p)|p|^{-1/2} \\ & = p^{1/2}(\chi_1(p)+\chi_2(p)). \end{aligned} \]

  • The double coset for \(R_p\) is the single coset \(\pmat p 0 0 p K\), so

\[ \begin{aligned} (R_p\fsph)(1) & = \int_K \fsph\left(\pmat p 0 0 p g \right)+ dg \\ & = \fsph\left(\pmat p 0 0 p g \right) \\ & = \chi_1(p)\chi_2(p). \end{aligned} \]

computational resource