"감마곱 (Gamma Products)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소</h5>
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소</h5>
 +
 +
* [[감마곱 (Gamma Products)]]
  
 
 
 
 
10번째 줄: 12번째 줄:
  
 
 
 
 
 +
 +
<h5>예</h5>
 +
 +
<math>\Gamma \left(\frac{1}{6}\right) \Gamma \left(\frac{5}{6}\right)=2\sqrt{\pi }</math>
 +
 +
 
 +
 +
<math>\Gamma \left(\frac{1}{14}\right) \Gamma \left(\frac{9}{14}\right) \Gamma \left(\frac{11}{14}\right)=4{\pi ^{3/2}}</math>
 +
 +
<math>\Gamma \left(\frac{3}{14}\right) \Gamma \left(\frac{5}{14}\right) \Gamma \left(\frac{13}{14}\right)=2\pi ^{3/2}</math>
  
 
 
 
 
80번째 줄: 92번째 줄:
 
* Luschny, Peter, and Stefan Wehmeier. 2009. “The lcm(1,2,...,n) as a product of sine values sampled over the points in Farey sequences.” <em>0909.1838</em> (September 10). http://arxiv.org/abs/0909.1838 .
 
* Luschny, Peter, and Stefan Wehmeier. 2009. “The lcm(1,2,...,n) as a product of sine values sampled over the points in Farey sequences.” <em>0909.1838</em> (September 10). http://arxiv.org/abs/0909.1838 .
 
*  Martin, Greg. 2009. “A product of Gamma function values at fractions with the same denominator.” <em>0907.4384</em> (July 24). http://arxiv.org/abs/0907.4384 .<br>
 
*  Martin, Greg. 2009. “A product of Gamma function values at fractions with the same denominator.” <em>0907.4384</em> (July 24). http://arxiv.org/abs/0907.4384 .<br>
* Nijenhuis, Albert. 2009. “Small Gamma Products with Simple Values.” <em>0907.1689</em> (July 9). http://arxiv.org/abs/0907.1689 .<br>
+
* Nijenhuis, Albert. 2009. “Small Gamma Products with Simple Values.” <em>0907.1689</em> (July 9). http://arxiv.org/abs/0907.1689 .
 +
*  Problem 11426, M. L. Glasser, The American Mathematical Monthly, Vol. 116, No. 4 (Apr., 2009), p. 365 http://www.jstor.org/stable/40391099<br>
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.ams.org/mathscinet
 
* http://www.ams.org/mathscinet

2011년 5월 18일 (수) 18:00 판

이 항목의 수학노트 원문주소

 

 

개요

 

 

\(\Gamma \left(\frac{1}{6}\right) \Gamma \left(\frac{5}{6}\right)=2\sqrt{\pi }\)

 

\(\Gamma \left(\frac{1}{14}\right) \Gamma \left(\frac{9}{14}\right) \Gamma \left(\frac{11}{14}\right)=4{\pi ^{3/2}}\)

\(\Gamma \left(\frac{3}{14}\right) \Gamma \left(\frac{5}{14}\right) \Gamma \left(\frac{13}{14}\right)=2\pi ^{3/2}\)

 

 

재미있는 사실

 

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서

 

 

링크