"감마곱 (Gamma Products)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
110번째 줄: 110번째 줄:
 
* Nijenhuis, Albert. 2009. “Small Gamma Products with Simple Values.” <em>0907.1689</em> (July 9). http://arxiv.org/abs/0907.1689 .
 
* Nijenhuis, Albert. 2009. “Small Gamma Products with Simple Values.” <em>0907.1689</em> (July 9). http://arxiv.org/abs/0907.1689 .
 
*  Problem 11426, M. L. Glasser, The American Mathematical Monthly, Vol. 116, No. 4 (Apr., 2009), p. 365 http://www.jstor.org/stable/40391099<br>
 
*  Problem 11426, M. L. Glasser, The American Mathematical Monthly, Vol. 116, No. 4 (Apr., 2009), p. 365 http://www.jstor.org/stable/40391099<br>
 +
** solution [http://math.la.asu.edu/%7Echeckman/AMM/11426_Heckman.pdf http://math.la.asu.edu/~checkman/AMM/11426_Heckman.pdf]
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.ams.org/mathscinet
 
* http://www.ams.org/mathscinet

2011년 6월 9일 (목) 11:30 판

이 항목의 수학노트 원문주소

 

 

개요
  • 자연수 n에 대한 잉여계의 부분집합 A에 대하여, 다음과 같은 감마함수의 곱이 언제 닫힌 형태로 표현되는가의 문제
    \(\prod_{k\in A}\Gamma(\frac{k}{n})\)

 

 

\(\Gamma \left(\frac{1}{6}\right) \Gamma \left(\frac{5}{6}\right)=2\sqrt{\pi }\)

\(\Gamma \left(\frac{1}{10}\right) \Gamma \left(\frac{3}{10}\right) \Gamma \left(\frac{7}{10}\right) \Gamma \left(\frac{9}{10}\right)=4 \pi ^2\)

\(\Gamma \left(\frac{1}{14}\right) \Gamma \left(\frac{9}{14}\right) \Gamma \left(\frac{11}{14}\right)=4{\pi ^{3/2}}\)

\(\Gamma \left(\frac{3}{14}\right) \Gamma \left(\frac{5}{14}\right) \Gamma \left(\frac{13}{14}\right)=2\pi ^{3/2}\)

\(\Gamma \left(\frac{1}{18}\right) \Gamma \left(\frac{5}{18}\right) \Gamma \left(\frac{7}{18}\right) \Gamma \left(\frac{11}{18}\right) \Gamma \left(\frac{13}{18}\right) \Gamma \left(\frac{17}{18}\right)=8 \pi ^3\)

\(\Gamma \left(\frac{1}{22}\right) \Gamma \left(\frac{3}{22}\right) \Gamma \left(\frac{5}{22}\right) \Gamma \left(\frac{7}{22}\right) \Gamma \left(\frac{9}{22}\right) \Gamma \left(\frac{13}{22}\right) \Gamma \left(\frac{15}{22}\right) \Gamma \left(\frac{17}{22}\right) \Gamma \left(\frac{19}{22}\right) \Gamma \left(\frac{21}{22}\right)=32 \pi ^5\)

\(\Gamma \left(\frac{1}{26}\right) \Gamma \left(\frac{3}{26}\right) \Gamma \left(\frac{5}{26}\right) \Gamma \left(\frac{7}{26}\right) \Gamma \left(\frac{9}{26}\right) \Gamma \left(\frac{11}{26}\right) \Gamma \left(\frac{15}{26}\right) \Gamma \left(\frac{17}{26}\right) \Gamma \left(\frac{19}{26}\right) \Gamma \left(\frac{21}{26}\right) \Gamma \left(\frac{23}{26}\right) \Gamma \left(\frac{25}{26}\right)=64 \pi ^6\)

\(\Gamma \left(\frac{1}{30}\right) \Gamma \left(\frac{17}{30}\right) \Gamma \left(\frac{19}{30}\right) \Gamma \left(\frac{23}{30}\right)=8 \pi ^2\)

\(\Gamma \left(\frac{1}{34}\right) \Gamma \left(\frac{9}{34}\right) \Gamma \left(\frac{13}{34}\right) \Gamma \left(\frac{15}{34}\right) \Gamma \left(\frac{19}{34}\right) \Gamma \left(\frac{21}{34}\right) \Gamma \left(\frac{25}{34}\right) \Gamma \left(\frac{33}{34}\right)=16 \pi ^4\)

 

 

 

재미있는 사실

 

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서

 

 

링크