"Holography and volume conjecture"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
3번째 줄: 3번째 줄:
 
* 3D-3D correspondence relates the CS invariants on M to supersymmetric quantities of the corresponding 3-dimensional quantum field theory which will be denoted by $T[M]$
 
* 3D-3D correspondence relates the CS invariants on M to supersymmetric quantities of the corresponding 3-dimensional quantum field theory which will be denoted by $T[M]$
 
* using holographic principle one can related the 3D theory $T[M]$ to M-theory on an anti de-Sitter space
 
* using holographic principle one can related the 3D theory $T[M]$ to M-theory on an anti de-Sitter space
 +
 +
 +
==M-theory==
 +
* still mysterious
 +
* 11d physical theory
 +
* fundamental objects are M2 (3d), M5(6d) branes
 +
* let $M$ be a 3dimensional space obtained as knot complement
 +
* in the study of dynamics of N M5-branes on $\mathbb{R}^{1,2}\times M$
 +
 +
 +
==3d-3d correspondence==
 +
* partition function $T_N[M]$ on $S_b^3$ = partition function $PGL(N)$ CS theory on $M$
 +
$$
 +
Z_{T_N[M]}[S_b^3](N,M;b)=Z^{\text{geom}}_{PGL(N)}[M;\hbar]
 +
$$
 +
where $2\pi i b^2=\hbar$
  
  
  
 
==holographic principle==
 
==holographic principle==
* Maldacena, Juan M. “The Large N Limit of Superconformal Field Theories and Supergravity.” arXiv:hep-th/9711200, November 27, 1997. http://arxiv.org/abs/hep-th/9711200.
+
* 3d $T_N[M]$ theory at large $N$ = M-theory on $\operatorname{AdS}_4\times M\times S^4$
 +
* for large $N$
 +
$$
 +
Z_{T_N[M]}[S_b^3](N,M;b)=\exp(-S_0^{\text{gravity}}[\operatorname{AdS}_4\times M\times S^4])\frac{(b+b^{-1})^2N^3}{12\pi}\operatorname{Vol}(M)+\text{subleadings}
 +
$$
 +
 
 +
 
 +
==related items==
 +
* [[AdS/CFT correspondence]]
  
  
==3d-3d correspondence==
+
==articles==
* M-theory : 11d physical theory
+
* Gang, Dongmin, Nakwoo Kim, and Sangmin Lee. “Holography of Wrapped M5-Branes and Chern-Simons Theory.” arXiv:1401.3595 [hep-Th], January 15, 2014. http://arxiv.org/abs/1401.3595.
* fundamental objects are M2 (3d), M5(6d) branes
+
===3d-3d correspondence===
* in the study of dynamics of N M5-branes on $\mathbb{R}^{1,2}\times M$
 
 
* Terashima, Yuji, and Masahito Yamazaki. “SL(2,R) Chern-Simons, Liouville, and Gauge Theory on Duality Walls.” Journal of High Energy Physics 2011, no. 8 (August 2011). doi:10.1007/JHEP08(2011)135.
 
* Terashima, Yuji, and Masahito Yamazaki. “SL(2,R) Chern-Simons, Liouville, and Gauge Theory on Duality Walls.” Journal of High Energy Physics 2011, no. 8 (August 2011). doi:10.1007/JHEP08(2011)135.
 
* Dimofte, Tudor, Davide Gaiotto, and Sergei Gukov. “Gauge Theories Labelled by Three-Manifolds.” arXiv:1108.4389 [hep-Th], August 22, 2011. http://arxiv.org/abs/1108.4389.
 
* Dimofte, Tudor, Davide Gaiotto, and Sergei Gukov. “Gauge Theories Labelled by Three-Manifolds.” arXiv:1108.4389 [hep-Th], August 22, 2011. http://arxiv.org/abs/1108.4389.
 +
===holography===
 +
* Maldacena, Juan M. “The Large N Limit of Superconformal Field Theories and Supergravity.” arXiv:hep-th/9711200, November 27, 1997. http://arxiv.org/abs/hep-th/9711200.

2014년 6월 10일 (화) 19:11 판

introduction

  • asymptotic behavior of perturbative Chern-Simons invariants on knot complements $M$
  • 3D-3D correspondence relates the CS invariants on M to supersymmetric quantities of the corresponding 3-dimensional quantum field theory which will be denoted by $T[M]$
  • using holographic principle one can related the 3D theory $T[M]$ to M-theory on an anti de-Sitter space


M-theory

  • still mysterious
  • 11d physical theory
  • fundamental objects are M2 (3d), M5(6d) branes
  • let $M$ be a 3dimensional space obtained as knot complement
  • in the study of dynamics of N M5-branes on $\mathbb{R}^{1,2}\times M$


3d-3d correspondence

  • partition function $T_N[M]$ on $S_b^3$ = partition function $PGL(N)$ CS theory on $M$

$$ Z_{T_N[M]}[S_b^3](N,M;b)=Z^{\text{geom}}_{PGL(N)}[M;\hbar] $$ where $2\pi i b^2=\hbar$


holographic principle

  • 3d $T_N[M]$ theory at large $N$ = M-theory on $\operatorname{AdS}_4\times M\times S^4$
  • for large $N$

$$ Z_{T_N[M]}[S_b^3](N,M;b)=\exp(-S_0^{\text{gravity}}[\operatorname{AdS}_4\times M\times S^4])\frac{(b+b^{-1})^2N^3}{12\pi}\operatorname{Vol}(M)+\text{subleadings} $$


related items


articles

  • Gang, Dongmin, Nakwoo Kim, and Sangmin Lee. “Holography of Wrapped M5-Branes and Chern-Simons Theory.” arXiv:1401.3595 [hep-Th], January 15, 2014. http://arxiv.org/abs/1401.3595.

3d-3d correspondence

  • Terashima, Yuji, and Masahito Yamazaki. “SL(2,R) Chern-Simons, Liouville, and Gauge Theory on Duality Walls.” Journal of High Energy Physics 2011, no. 8 (August 2011). doi:10.1007/JHEP08(2011)135.
  • Dimofte, Tudor, Davide Gaiotto, and Sergei Gukov. “Gauge Theories Labelled by Three-Manifolds.” arXiv:1108.4389 [hep-Th], August 22, 2011. http://arxiv.org/abs/1108.4389.

holography