"Braid group"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
32번째 줄: | 32번째 줄: | ||
+ | ==computational resource== | ||
+ | * https://docs.google.com/file/d/0B8XXo8Tve1cxZ3NjMGpGUWI0QkE/edit | ||
+ | |||
47번째 줄: | 50번째 줄: | ||
* http://en.wikipedia.org/wiki/Braid_group | * http://en.wikipedia.org/wiki/Braid_group | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
[[분류:개인노트]] | [[분류:개인노트]] | ||
− | |||
[[분류:math and physics]] | [[분류:math and physics]] |
2013년 2월 22일 (금) 09:14 판
review of symmetric groups
- 원소의 개수가 n인 집합의 전단사함수들의 모임
- \(n!\) 개의 원소가 존재함
- 대칭군의 부분군은 치환군(permutation group)이라 불림
presentation of symmetric groups
- 생성원 \(\sigma_1, \ldots, \sigma_{n-1}\)
- relations
- \({\sigma_i}^2 = 1\)
- \(\sigma_i\sigma_j = \sigma_j\sigma_i \mbox{ if } j \neq i\pm 1\)
- \(\sigma_i\sigma_{i+1}\sigma_i = \sigma_{i+1}\sigma_i\sigma_{i+1}\\)
- \({\sigma_i}^2 = 1\)
presentation of braid groups
\(B_n\)
generators \(\sigma_1,...,\sigma_{n-1}\)
relations (known as the braid or Artin relations)\[\sigma_i\sigma_j =\sigma_j \sigma_i\] whenever \(|i-j| \geq 2 \)
\(\sigma_i\sigma_{i+1}\sigma_i = \sigma_{i+1}\sigma_i \sigma_{i+1}\) for \(i = 1,..., n-2\)Yang-Baxter equation (YBE)
computational resource
encyclopedia