"Brownian motion"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
4번째 줄: 4번째 줄:
 
** the limit of random walk as the time and space increments go to zero.
 
** the limit of random walk as the time and space increments go to zero.
 
* Mandelbrot conjecture
 
* Mandelbrot conjecture
* fractal dimension of the frontier of a two dimensional Browninan path is 4/3
+
*  
  
 
 
 
 
18번째 줄: 18번째 줄:
 
<h5>Mandelbrot conjecture</h5>
 
<h5>Mandelbrot conjecture</h5>
  
 
+
* the Hausdorff dimension of the outer boundary of a planar Brownian motion equals 4=3
 +
*  
  
 
 
 
 
69번째 줄: 70번째 줄:
  
 
* [http://research.microsoft.com/en-us/um/people/schramm/memorial/talk-CDM.ps Scaling Limits of Random Processes and the Outer Boundary of Planar Brownian Motion (2000)]
 
* [http://research.microsoft.com/en-us/um/people/schramm/memorial/talk-CDM.ps Scaling Limits of Random Processes and the Outer Boundary of Planar Brownian Motion (2000)]
 +
* [http://www.nber.org/%7Enroussan/thesis/thesis.pdf The Mandelbrot’s Conjecture and Critical Exponents for Brownian Motion]<br>
 +
** Nikolai Roussanov, 2001
 
* http://www.thehcmr.org/issue2_2/stats_corner.pdf
 
* http://www.thehcmr.org/issue2_2/stats_corner.pdf
 
* [http://stat-www.berkeley.edu/%7Eperes/bmall.pdf An Invitation to Sample Paths of Brownian Motion]
 
* [http://stat-www.berkeley.edu/%7Eperes/bmall.pdf An Invitation to Sample Paths of Brownian Motion]

2010년 10월 19일 (화) 15:13 판

introduction
  • scaling limit of a random walk on a two dimensional grid
    • the limit of random walk as the time and space increments go to zero.
  • Mandelbrot conjecture
  •  

 

 

Wiener process

 

 

Mandelbrot conjecture
  • the Hausdorff dimension of the outer boundary of a planar Brownian motion equals 4=3
  •  

 

 

 

history

 

 

related items

 

encyclopedia

 

 

books

 

 

expositions and lecture notes

 

 

articles

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links