"격자의 세타함수"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로) |
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “<h5 (.*)">” 문자열을 “==” 문자열로) |
||
1번째 줄: | 1번째 줄: | ||
− | + | ==이 항목의 수학노트 원문주소== | |
* [[격자의 세타함수]] | * [[격자의 세타함수]] | ||
7번째 줄: | 7번째 줄: | ||
− | + | ==정의== | |
* 격자 <math>L</math> 에 대하여 세타함수를 다음과 같이 정의함<br><math>\theta_L(\tau)=\sum_{x\in L}q^{\frac{x^2}{2}}, q=e^{2\pi i \tau}</math><br> | * 격자 <math>L</math> 에 대하여 세타함수를 다음과 같이 정의함<br><math>\theta_L(\tau)=\sum_{x\in L}q^{\frac{x^2}{2}}, q=e^{2\pi i \tau}</math><br> | ||
16번째 줄: | 16번째 줄: | ||
− | + | ==자코비 세타함수의 경우== | |
* 격자가 정수집합 <math>\mathbb Z</math> 로 주어진 경우의 세타함수<br><math>\theta(\tau)=\sum_{n\in \mathbb Z}q^{\frac{n^2}{2}}= \sum_{n=-\infty}^\infty e^{\pi i n^2 \tau}</math>, <math>q=e^{2\pi i \tau}</math><br> | * 격자가 정수집합 <math>\mathbb Z</math> 로 주어진 경우의 세타함수<br><math>\theta(\tau)=\sum_{n\in \mathbb Z}q^{\frac{n^2}{2}}= \sum_{n=-\infty}^\infty e^{\pi i n^2 \tau}</math>, <math>q=e^{2\pi i \tau}</math><br> | ||
24번째 줄: | 24번째 줄: | ||
− | + | ==세타함수의 모듈라 성질== | |
(정리) | (정리) | ||
42번째 줄: | 42번째 줄: | ||
− | + | ==관련된 항목들== | |
* [[자코비 세타함수]]<br> | * [[자코비 세타함수]]<br> |
2012년 11월 1일 (목) 13:25 판
이 항목의 수학노트 원문주소
정의
- 격자 \(L\) 에 대하여 세타함수를 다음과 같이 정의함
\(\theta_L(\tau)=\sum_{x\in L}q^{\frac{x^2}{2}}, q=e^{2\pi i \tau}\) - 여기서 \(x^2\) 은 벡터 \(x\)의 norm 을 가리킴.
자코비 세타함수의 경우
- 격자가 정수집합 \(\mathbb Z\) 로 주어진 경우의 세타함수
\(\theta(\tau)=\sum_{n\in \mathbb Z}q^{\frac{n^2}{2}}= \sum_{n=-\infty}^\infty e^{\pi i n^2 \tau}\), \(q=e^{2\pi i \tau}\)
세타함수의 모듈라 성질
(정리)
rank가 2n의 even unimodular 격자 \(L\)에 대하여 , 세타함수 \(\theta_L\) 은 weight n인 모듈라 형식이 된다.
(증명)
먼저 cusp 에서의 푸리에 급수 조건은 정의에 만족된다. ( \(\theta_L(i\infty)=1\) 도 알 수 있음.)
포아송의 덧셈 공식을 사용하자.