"Hirota bilinear method"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
 
<h5>introduction</h5>
 
<h5>introduction</h5>
  
Advantages of the bilinear formalism:<br> • Multisoliton solutions easy to construct.<br> • The dependent variables are usually tau-functions, with good properties.<br> • Natural for the Sato theory, which explains hierarchies of integrable equations (Jimbo and Miwa)<br> • Suitable for classification: the bilinear form strongly restricts the freedom of changing dependent variables.
+
 
  
 
 
 
 
  
* http://mathworld.wolfram.com/HirotaEquation.html
+
 
  
 
 
 
 
  
* [http://front.math.ucdavis.edu/0905.3776 Integrable deformations of CFTs and the discrete Hirota equations]<br>
+
<h5>Advantages of the bilinear formalism:</h5>
** Werner Nahm, Sinéad Keegan, 2009<br>
+
 
 +
* Multisoliton solutions easy to construct.
 +
* The dependent variables are usually tau-functions, with good properties.
 +
* Natural for the Sato theory, which explains hierarchies of integrable equations (Jimbo and Miwa)
 +
* Suitable for classification: the bilinear form strongly restricts the freedom of changing dependent variables.
  
 
 
 
 
 
*  
 
  
 
 
 
 
35번째 줄: 37번째 줄:
  
 
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 +
* http://mathworld.wolfram.com/HirotaEquation.html
 
* http://www.scholarpedia.org/
 
* http://www.scholarpedia.org/
 
* [http://eom.springer.de/ http://eom.springer.de]
 
* [http://eom.springer.de/ http://eom.springer.de]
66번째 줄: 69번째 줄:
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5>
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5>
  
 
+
* [http://front.math.ucdavis.edu/0905.3776 Integrable deformations of CFTs and the discrete Hirota equations]<br>
 +
**  Werner Nahm, Sinéad Keegan, 2009<br>
 +
*  Ma, Wen-Xiu, and Yuncheng You. 2005. Solving the Korteweg-de Vries Equation by Its Bilinear Form: Wronskian Solutions. Transactions of the American Mathematical Society 357, no. 5 (May 1): 1753-1778. <br>  <br>
  
 
* http://www.ams.org/mathscinet
 
* http://www.ams.org/mathscinet

2011년 4월 1일 (금) 07:54 판

introduction

 

 

 

 

Advantages of the bilinear formalism:
  • Multisoliton solutions easy to construct.
  • The dependent variables are usually tau-functions, with good properties.
  • Natural for the Sato theory, which explains hierarchies of integrable equations (Jimbo and Miwa)
  • Suitable for classification: the bilinear form strongly restricts the freedom of changing dependent variables.

 

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

 

 

expositions

 

 

articles

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links