"Hirota bilinear method"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
1번째 줄: | 1번째 줄: | ||
<h5>introduction</h5> | <h5>introduction</h5> | ||
− | + | ||
− | + | ||
− | + | <h5>Advantages of the bilinear formalism:</h5> | |
− | ** | + | |
+ | * Multisoliton solutions easy to construct. | ||
+ | * The dependent variables are usually tau-functions, with good properties. | ||
+ | * Natural for the Sato theory, which explains hierarchies of integrable equations (Jimbo and Miwa) | ||
+ | * Suitable for classification: the bilinear form strongly restricts the freedom of changing dependent variables. | ||
− | |||
− | |||
35번째 줄: | 37번째 줄: | ||
* http://en.wikipedia.org/wiki/ | * http://en.wikipedia.org/wiki/ | ||
+ | * http://mathworld.wolfram.com/HirotaEquation.html | ||
* http://www.scholarpedia.org/ | * http://www.scholarpedia.org/ | ||
* [http://eom.springer.de/ http://eom.springer.de] | * [http://eom.springer.de/ http://eom.springer.de] | ||
66번째 줄: | 69번째 줄: | ||
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5> | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5> | ||
− | + | * [http://front.math.ucdavis.edu/0905.3776 Integrable deformations of CFTs and the discrete Hirota equations]<br> | |
+ | ** Werner Nahm, Sinéad Keegan, 2009<br> | ||
+ | * Ma, Wen-Xiu, and Yuncheng You. 2005. Solving the Korteweg-de Vries Equation by Its Bilinear Form: Wronskian Solutions. Transactions of the American Mathematical Society 357, no. 5 (May 1): 1753-1778. <br> <br> | ||
* http://www.ams.org/mathscinet | * http://www.ams.org/mathscinet |
2011년 4월 1일 (금) 07:54 판
introduction
Advantages of the bilinear formalism:
- Multisoliton solutions easy to construct.
- The dependent variables are usually tau-functions, with good properties.
- Natural for the Sato theory, which explains hierarchies of integrable equations (Jimbo and Miwa)
- Suitable for classification: the bilinear form strongly restricts the freedom of changing dependent variables.
history
encyclopedia
- http://en.wikipedia.org/wiki/
- http://mathworld.wolfram.com/HirotaEquation.html
- http://www.scholarpedia.org/
- http://eom.springer.de
- http://www.proofwiki.org/wiki/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
books
expositions
- Hirota’s bilinear method and integrability Jarmo Hietarinta, 2008
articles
- Integrable deformations of CFTs and the discrete Hirota equations
- Werner Nahm, Sinéad Keegan, 2009
- Werner Nahm, Sinéad Keegan, 2009
- Ma, Wen-Xiu, and Yuncheng You. 2005. Solving the Korteweg-de Vries Equation by Its Bilinear Form: Wronskian Solutions. Transactions of the American Mathematical Society 357, no. 5 (May 1): 1753-1778.
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://arxiv.org/
- http://www.pdf-search.org/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://dx.doi.org/
question and answers(Math Overflow)
blogs
- 구글 블로그 검색
- http://ncatlab.org/nlab/show/HomePage
experts on the field