"Hirota bilinear method"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
imported>Pythagoras0
잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
1번째 줄: 1번째 줄:
==introduction</h5>
+
==introduction==
  
 
 
 
 
9번째 줄: 9번째 줄:
 
 
 
 
  
==Advantages of the bilinear formalism:</h5>
+
==Advantages of the bilinear formalism:==
  
 
* Multisoliton solutions easy to construct.
 
* Multisoliton solutions easy to construct.
26번째 줄: 26번째 줄:
 
 
 
 
  
==history</h5>
+
==history==
  
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
34번째 줄: 34번째 줄:
 
 
 
 
  
==related items</h5>
+
==related items==
  
 
* [[KdV equation]]
 
* [[KdV equation]]
45번째 줄: 45번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia==
  
 
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
58번째 줄: 58번째 줄:
 
 
 
 
  
==books</h5>
+
==books==
  
 
* Yoshimasa matsuno Bilinear Transformation Method
 
* Yoshimasa matsuno Bilinear Transformation Method
70번째 줄: 70번째 줄:
 
 
 
 
  
==expositions</h5>
+
==expositions==
  
 
* Bilinear Formalism in Soliton TheoryJ. Satsuma http://www.springerlink.com/content/pv618enuumbm98bx/
 
* Bilinear Formalism in Soliton TheoryJ. Satsuma http://www.springerlink.com/content/pv618enuumbm98bx/
81번째 줄: 81번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles==
  
 
* [http://front.math.ucdavis.edu/0905.3776 Integrable deformations of CFTs and the discrete Hirota equations]<br>
 
* [http://front.math.ucdavis.edu/0905.3776 Integrable deformations of CFTs and the discrete Hirota equations]<br>
99번째 줄: 99번째 줄:
 
 
 
 
  
==question and answers(Math Overflow)</h5>
+
==question and answers(Math Overflow)==
  
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
108번째 줄: 108번째 줄:
 
 
 
 
  
==blogs</h5>
+
==blogs==
  
 
*  구글 블로그 검색<br>
 
*  구글 블로그 검색<br>
119번째 줄: 119번째 줄:
 
 
 
 
  
==experts on the field</h5>
+
==experts on the field==
  
 
* http://arxiv.org/
 
* http://arxiv.org/
127번째 줄: 127번째 줄:
 
 
 
 
  
==links</h5>
+
==links==
  
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]

2012년 10월 28일 (일) 14:28 판

introduction

 

 

 

 

Advantages of the bilinear formalism:

  • Multisoliton solutions easy to construct.
  • The dependent variables are usually tau-functions, with good properties.
  • Natural for the Sato theory, which explains hierarchies of integrable equations (Jimbo and Miwa)
  • Suitable for classification: the bilinear form strongly restricts the freedom of changing dependent variables.

 

 

example

http://www.thehcmr.org/issue2_1/soliton.pdf

 

history

 

 

related items

 

 

 

encyclopedia==    

books

 

 

expositions

 

 

articles==    

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links