"Hirota bilinear method"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
83번째 줄: 83번째 줄:
  
 
==articles==
 
==articles==
 
* [http://front.math.ucdavis.edu/0905.3776 Integrable deformations of CFTs and the discrete Hirota equations]<br>
 
**  Werner Nahm, Sinéad Keegan, 2009<br>
 
*  
 
 
 
* http://www.ams.org/mathscinet
 
* http://www.ams.org/mathscinet
 
* http://www.zentralblatt-math.org/zmath/en/
 
* http://www.zentralblatt-math.org/zmath/en/

2012년 10월 29일 (월) 15:42 판

introduction

 

 

 

 

Advantages of the bilinear formalism:

  • Multisoliton solutions easy to construct.
  • The dependent variables are usually tau-functions, with good properties.
  • Natural for the Sato theory, which explains hierarchies of integrable equations (Jimbo and Miwa)
  • Suitable for classification: the bilinear form strongly restricts the freedom of changing dependent variables.

 

 

example

http://www.thehcmr.org/issue2_1/soliton.pdf

 

history

 

 

related items

 

 

계산 리소스

 

encyclopedia

 

 

books

 

 

expositions

 

 

articles

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links