"Hirota bilinear method"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
61번째 줄: 61번째 줄:
 
* [http://users.utu.fi/hietarin/Bangalore.pdf Hirota’s bilinear method and integrability] Jarmo Hietarinta, 2008
 
* [http://users.utu.fi/hietarin/Bangalore.pdf Hirota’s bilinear method and integrability] Jarmo Hietarinta, 2008
 
* Goldstein, P. P. 2007. “Hints on the Hirota Bilinear Method.” Acta Physica Polonica A 112 (December): 1171.
 
* Goldstein, P. P. 2007. “Hints on the Hirota Bilinear Method.” Acta Physica Polonica A 112 (December): 1171.
 +
 +
 +
==articles==
 +
* Bazeia, D., L. Losano, and J. L. R. Santos. “Solitonic Traveling Waves in Galileon Theory.” arXiv:1408.3822 [hep-Th, Physics:math-Ph], August 17, 2014. http://arxiv.org/abs/1408.3822.
  
  
 
[[분류:integrable systems]]
 
[[분류:integrable systems]]
 
[[분류:math and physics]]
 
[[분류:math and physics]]

2014년 8월 30일 (토) 18:41 판

introduction

 

 

 

 

Advantages of the bilinear formalism:

  • Multisoliton solutions easy to construct.
  • The dependent variables are usually tau-functions, with good properties.
  • Natural for the Sato theory, which explains hierarchies of integrable equations (Jimbo and Miwa)
  • Suitable for classification: the bilinear form strongly restricts the freedom of changing dependent variables.

 

 

example

http://www.thehcmr.org/issue2_1/soliton.pdf

 


 

related items

 

 

계산 리소스

 

encyclopedia

 

 

books

 

expositions


articles

  • Bazeia, D., L. Losano, and J. L. R. Santos. “Solitonic Traveling Waves in Galileon Theory.” arXiv:1408.3822 [hep-Th, Physics:math-Ph], August 17, 2014. http://arxiv.org/abs/1408.3822.