"Finite dimensional representations of Sl(2)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
 
<h5>introduction</h5>
 
<h5>introduction</h5>
  
Define <math>w^{2(2k+3)}=1</math> and <math>z=w+w^{-1}</math>
+
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
<h5>character formula</h5>
 +
 
 +
*  Weyl-Kac formula<br><math>ch(V)={\sum_{w\in W} (-1)^{\ell(w)}w(e^{\lambda+\rho}) \over e^{\rho}\prod_{\alpha>0}(1-e^{-\alpha})}</math><br>
  
<math>p_i(z)=\frac{w^{i+1}-w^{-i-1}}{w-w^{-1}}</math> for <math> i=1,\cdots, k</math>
+
*  for trivial representation, we get denominator identity<br><math>{\sum_{w\in W} (-1)^{\ell(w)}w(e^{\rho}) = e^{\rho}\prod_{\alpha>0}(1-e^{-\alpha})^{m_{\alpha}}}</math><br>
  
 
 
 
 
  
 
 
 
 
 +
 +
<h5 style="line-height: 2em; margin: 0px;">Chebyshev polynomial</h5>
  
 
* <math>U_{n+1}(x) & = 2xU_n(x) - U_{n-1}(x)</math>
 
* <math>U_{n+1}(x) & = 2xU_n(x) - U_{n-1}(x)</math>
 +
* Define <math>w^{2(2k+3)}=1</math> and <math>z=w+w^{-1}</math>
  
 
 
 
 
 +
 +
<math>p_i(z)=\frac{w^{i+1}-w^{-i-1}}{w-w^{-1}}</math> for <math> i=1,\cdots, k</math>
  
 
 
 
 
  
<h5>recurrence relation</h5>
+
 
  
 
* <math>p_{0}(z)=1</math>
 
* <math>p_{0}(z)=1</math>
 
* <math>p_{1}(z)=z</math>
 
* <math>p_{1}(z)=z</math>
 
* <math>p_i(z)^2=1+p_{i-1}(z)p_{i+1}(z)</math>
 
* <math>p_i(z)^2=1+p_{i-1}(z)p_{i+1}(z)</math>
 
 
 
 
 
 
  
 
 
 
 

2010년 4월 4일 (일) 19:31 판

introduction

 

 

 

character formula
  • Weyl-Kac formula
    \(ch(V)={\sum_{w\in W} (-1)^{\ell(w)}w(e^{\lambda+\rho}) \over e^{\rho}\prod_{\alpha>0}(1-e^{-\alpha})}\)
  • for trivial representation, we get denominator identity
    \({\sum_{w\in W} (-1)^{\ell(w)}w(e^{\rho}) = e^{\rho}\prod_{\alpha>0}(1-e^{-\alpha})^{m_{\alpha}}}\)

 

 

Chebyshev polynomial
  • \(U_{n+1}(x) & = 2xU_n(x) - U_{n-1}(x)\)
  • Define \(w^{2(2k+3)}=1\) and \(z=w+w^{-1}\)

 

\(p_i(z)=\frac{w^{i+1}-w^{-i-1}}{w-w^{-1}}\) for \( i=1,\cdots, k\)

 

 

  • \(p_{0}(z)=1\)
  • \(p_{1}(z)=z\)
  • \(p_i(z)^2=1+p_{i-1}(z)p_{i+1}(z)\)

 

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

 

 

articles

[[2010년 books and articles|]]

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links