"슬레이터 3"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
이 항목의 수학노트 원문주소==
imported>Pythagoras0 잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로) |
imported>Pythagoras0 잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로) |
||
1번째 줄: | 1번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소 | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소== |
* [[슬레이터 3]] | * [[슬레이터 3]] | ||
7번째 줄: | 7번째 줄: | ||
− | ==개요 | + | ==개요== |
* 항등식<br><math>\prod_{n=1}^{\infty}(1-q^{2n-1})=\sum_{n=1}^{\infty}\frac{(-1)^nq^{n^2}}{(q^2;q^2)_n}</math><br> | * 항등식<br><math>\prod_{n=1}^{\infty}(1-q^{2n-1})=\sum_{n=1}^{\infty}\frac{(-1)^nq^{n^2}}{(q^2;q^2)_n}</math><br> | ||
16번째 줄: | 16번째 줄: | ||
− | ==항등식의 분류 | + | ==항등식의 분류== |
* [[슬레이터 목록 (Slater's list)]] | * [[슬레이터 목록 (Slater's list)]] | ||
25번째 줄: | 25번째 줄: | ||
− | <h5 style="line-height: 2em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">켤레 베일리 쌍의 유도 | + | <h5 style="line-height: 2em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">켤레 베일리 쌍의 유도== |
* [[q-가우스 합]] 에서 얻어진 다음 결과를 이용<br><math>\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}</math>, <math>\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}</math><br><math>\gamma_{n}=\sum_{r=0}^{\infty}\frac{\delta_{n+r}}{(x)_{r+2n}(q)_{r}}</math><br> | * [[q-가우스 합]] 에서 얻어진 다음 결과를 이용<br><math>\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}</math>, <math>\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}</math><br><math>\gamma_{n}=\sum_{r=0}^{\infty}\frac{\delta_{n+r}}{(x)_{r+2n}(q)_{r}}</math><br> | ||
35번째 줄: | 35번째 줄: | ||
− | <h5 style="line-height: 2em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">베일리 쌍의 유도 | + | <h5 style="line-height: 2em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">베일리 쌍의 유도== |
* 다음을 이용 '''[Slater51] '''(4.2)<br><math>\sum_{r=-[n/2]}^{r=[n/2]}\frac{(1-aq^{4r})(q^{-n})_{2r}a^{2r}q^{2nr+r}(d)_{q^2,r}(e)_{q^2,r}}{(1-a)(aq^{n+1})_{2r}d^re^r(aq^2/d)_{q^2,r}(aq^2/e)_{q^2,r}}=\frac{(q^2/a,aq/d,aq/e,aq^2/de;q^2)_{\infty}}{(q,q^2/d,q^2/e,a^2q/de;q^2)_{\infty}}\frac{(q)_{n}(aq)_{n}(a^2/de)_{q^2,n}}{(aq)_{q^2,n}(aq/d)_{n}(aq/e)_{n}}</math><br> | * 다음을 이용 '''[Slater51] '''(4.2)<br><math>\sum_{r=-[n/2]}^{r=[n/2]}\frac{(1-aq^{4r})(q^{-n})_{2r}a^{2r}q^{2nr+r}(d)_{q^2,r}(e)_{q^2,r}}{(1-a)(aq^{n+1})_{2r}d^re^r(aq^2/d)_{q^2,r}(aq^2/e)_{q^2,r}}=\frac{(q^2/a,aq/d,aq/e,aq^2/de;q^2)_{\infty}}{(q,q^2/d,q^2/e,a^2q/de;q^2)_{\infty}}\frac{(q)_{n}(aq)_{n}(a^2/de)_{q^2,n}}{(aq)_{q^2,n}(aq/d)_{n}(aq/e)_{n}}</math><br> | ||
45번째 줄: | 45번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">q-series 항등식 | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">q-series 항등식== |
* 항등식<br><math>\prod_{n=1}^{\infty}(1-q^{2n-1})=\sum_{n=1}^{\infty}\frac{(-1)^nq^{n^2}}{(q^2;q^2)_n}</math><br> | * 항등식<br><math>\prod_{n=1}^{\infty}(1-q^{2n-1})=\sum_{n=1}^{\infty}\frac{(-1)^nq^{n^2}}{(q^2;q^2)_n}</math><br> |
2012년 10월 28일 (일) 15:16 판
이 항목의 수학노트 원문주소==
개요
- 항등식
\(\prod_{n=1}^{\infty}(1-q^{2n-1})=\sum_{n=1}^{\infty}\frac{(-1)^nq^{n^2}}{(q^2;q^2)_n}\)
- q-초기하급수에 대한 오일러공식의 특별한 경우
\(\prod_{n=0}^{\infty}(1+zq^n)=1+\sum_{n\geq 1}\frac{q^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} z^n\) 에서 \(z=-q^{1/2}\) 인 경우
항등식의 분류
켤레 베일리 쌍의 유도==
- q-가우스 합 에서 얻어진 다음 결과를 이용
\(\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}\), \(\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}\)
\(\gamma_{n}=\sum_{r=0}^{\infty}\frac{\delta_{n+r}}{(x)_{r+2n}(q)_{r}}\)
- 다음의 특수한 경우
\(x=q, y\to\infty, z\to\infty\).
- 얻어진 켤레 베일리 쌍 (relative to 1)
\(\delta_n=q^{n^2}\)
\(\gamma_n=\frac{q^{n^2}}{(q)_{\infty}}\)
베일리 쌍의 유도==
- 다음을 이용 [Slater51] (4.2)
\(\sum_{r=-[n/2]}^{r=[n/2]}\frac{(1-aq^{4r})(q^{-n})_{2r}a^{2r}q^{2nr+r}(d)_{q^2,r}(e)_{q^2,r}}{(1-a)(aq^{n+1})_{2r}d^re^r(aq^2/d)_{q^2,r}(aq^2/e)_{q^2,r}}=\frac{(q^2/a,aq/d,aq/e,aq^2/de;q^2)_{\infty}}{(q,q^2/d,q^2/e,a^2q/de;q^2)_{\infty}}\frac{(q)_{n}(aq)_{n}(a^2/de)_{q^2,n}}{(aq)_{q^2,n}(aq/d)_{n}(aq/e)_{n}}\)
- 다음의 특수한 경우 (not confirmed)
\(a=q,d\to 0,e\to 0 \)
\(\frac{(q^2/a,aq/d,aq/e,aq^2/de;q^2)_{\infty}}{(q,q^2/d,q^2/e,a^2q/de;q^2)_{\infty}}\to 1\)
\(\frac{(q)_{n}(aq)_{n}(a^2/de)_{q^2,n}}{(aq)_{q^2,n}(aq/d)_{n}(aq/e)_{n}}\to \frac{(-1)^n (q)_n (a q)_n}{(a q,q^2)_n q^{2n} }\)
- 얻어진 베일리 쌍 (relative to 1)
\(\alpha_{0}=1\),\(\alpha_{2r}=2\), \(\alpha_{2r+1}=-2\)
\(\beta_n=\sum_{r=0}^{n}\frac{\alpha_r}{(x)_{n-r}(q)_{n+r}}=\sum_{r=0}^{n}\frac{\alpha_r}{(q)_{n-r}(q)_{n+r}}=\frac{(-1)^n}{(q^2;q^2)_{n}}\)
q-series 항등식==
- 항등식
\(\prod_{n=1}^{\infty}(1-q^{2n-1})=\sum_{n=1}^{\infty}\frac{(-1)^nq^{n^2}}{(q^2;q^2)_n}\)
- 베일리 쌍(Bailey pair)과 베일리 보조정리
\(\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\sum_{n=0}^{\infty}\beta_n\delta_{n}\)
\(\sum_{n=0}^{\infty}\beta_n\delta_{n}=\sum_{n=0}^{\infty}\frac{(-1)^nq^{n^2}}{(q^2;q^2)_{n}}\)
\(\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\frac{1+2\sum_{n=1}^{\infty}(-1)^{n}q^{n^2}}{(q)_{\infty}}=\prod_{n=1}^{\infty}(1-q^{2n-1})\)
\(\prod_{n=1}^{\infty}(1-q^{2n-1})=\sum_{n=1}^{\infty}\frac{(-1)^nq^{n^2}}{(q^2;q^2)_n}\)
\(\prod_{n=0}^{\infty}(1+zq^n)=1+\sum_{n\geq 1}\frac{q^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} z^n\) 에서 \(z=-q^{1/2}\) 인 경우
- q-가우스 합 에서 얻어진 다음 결과를 이용
\(\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}\), \(\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}\)
\(\gamma_{n}=\sum_{r=0}^{\infty}\frac{\delta_{n+r}}{(x)_{r+2n}(q)_{r}}\) - 다음의 특수한 경우
\(x=q, y\to\infty, z\to\infty\). - 얻어진 켤레 베일리 쌍 (relative to 1)
\(\delta_n=q^{n^2}\)
\(\gamma_n=\frac{q^{n^2}}{(q)_{\infty}}\)
- 다음을 이용 [Slater51] (4.2)
\(\sum_{r=-[n/2]}^{r=[n/2]}\frac{(1-aq^{4r})(q^{-n})_{2r}a^{2r}q^{2nr+r}(d)_{q^2,r}(e)_{q^2,r}}{(1-a)(aq^{n+1})_{2r}d^re^r(aq^2/d)_{q^2,r}(aq^2/e)_{q^2,r}}=\frac{(q^2/a,aq/d,aq/e,aq^2/de;q^2)_{\infty}}{(q,q^2/d,q^2/e,a^2q/de;q^2)_{\infty}}\frac{(q)_{n}(aq)_{n}(a^2/de)_{q^2,n}}{(aq)_{q^2,n}(aq/d)_{n}(aq/e)_{n}}\) - 다음의 특수한 경우 (not confirmed)
\(a=q,d\to 0,e\to 0 \)
\(\frac{(q^2/a,aq/d,aq/e,aq^2/de;q^2)_{\infty}}{(q,q^2/d,q^2/e,a^2q/de;q^2)_{\infty}}\to 1\)
\(\frac{(q)_{n}(aq)_{n}(a^2/de)_{q^2,n}}{(aq)_{q^2,n}(aq/d)_{n}(aq/e)_{n}}\to \frac{(-1)^n (q)_n (a q)_n}{(a q,q^2)_n q^{2n} }\) - 얻어진 베일리 쌍 (relative to 1)
\(\alpha_{0}=1\),\(\alpha_{2r}=2\), \(\alpha_{2r+1}=-2\)
\(\beta_n=\sum_{r=0}^{n}\frac{\alpha_r}{(x)_{n-r}(q)_{n+r}}=\sum_{r=0}^{n}\frac{\alpha_r}{(q)_{n-r}(q)_{n+r}}=\frac{(-1)^n}{(q^2;q^2)_{n}}\)
- 항등식
\(\prod_{n=1}^{\infty}(1-q^{2n-1})=\sum_{n=1}^{\infty}\frac{(-1)^nq^{n^2}}{(q^2;q^2)_n}\)
- 베일리 쌍(Bailey pair)과 베일리 보조정리
\(\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\sum_{n=0}^{\infty}\beta_n\delta_{n}\)
\(\sum_{n=0}^{\infty}\beta_n\delta_{n}=\sum_{n=0}^{\infty}\frac{(-1)^nq^{n^2}}{(q^2;q^2)_{n}}\)
\(\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\frac{1+2\sum_{n=1}^{\infty}(-1)^{n}q^{n^2}}{(q)_{\infty}}=\prod_{n=1}^{\infty}(1-q^{2n-1})\)