"Talk on Chevalley's integral forms"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
40번째 줄: | 40번째 줄: | ||
==Chevalley== | ==Chevalley== | ||
+ | ===리대수 <math>\mathfrak{sl}(2)</math>=== | ||
+ | * <math>L=\langle E,F,H \rangle</math> | ||
+ | * commutator | ||
+ | :<math>[E,F]=H</math> | ||
+ | :<math>[H,E]=2E</math><math>[H,F]=-2F</math> | ||
+ | |||
+ | ===general case=== | ||
;thm | ;thm | ||
Chevalley bases exist | Chevalley bases exist | ||
* Q. why is it surprising? | * Q. why is it surprising? | ||
* for example, taking $2x_{\alpha}$ instead of $x_{\alpha}$ still gives integral Lie bracket. | * for example, taking $2x_{\alpha}$ instead of $x_{\alpha}$ still gives integral Lie bracket. | ||
+ | |||
+ | |||
+ | ==Kostant== | ||
+ | * universal enveloping algebra의 PBW 기저 | ||
+ | :<math>\{F^kH^lE^m|k,l,m\geq 0\}</math> | ||
+ | ;thm | ||
+ | For each choice of $r_i,s_{\alpha}\geq 0$, form the product in the given order of the elements | ||
+ | $$ | ||
+ | \binom{h_i}{r_i} | ||
+ | $$ | ||
+ | and the elements | ||
+ | $$ | ||
+ | \frac{x_{\alpha}^{s_{\alpha}}}{s_{\alpha}!} | ||
+ | $$ | ||
+ | for $i=1,\cdots, \ell$ and $\alpha\in \Phi$. Then the resulting collection if a basis for $U_{\mathbb{Z}}$ as a free $\mathbb{Z}$-module | ||
+ | |||
+ | * for examplem, one can take | ||
+ | :<math>\{\frac{F^k}{k!}\binom{H}{l}\frac{E^m}{m!}|k,l,m\geq 0\}</math> | ||
+ | * <math>\exp(tE)</math> and <math>\exp(tF)</math> exist | ||
+ | * <math>\exp(tH)</math> does not exist instead <math>(1+t)^{H}=1+\binom{H}{1}t+\binom{H^2}{2!}t^2+\cdots</math> exists | ||
[[분류:talks]] | [[분류:talks]] | ||
[[분류:talks and lecture notes]] | [[분류:talks and lecture notes]] |
2014년 3월 27일 (목) 14:09 판
introduction
motivating questions
- why do we want integral forms?
- $\mathfrak{g}_{\mathbb{Z}}$ is a Lie algebra over $\mathbb{Z}$
Serre's relations
- 틀:수학노트 에서 가져옴
- l : 리대수 \(\mathfrak{g}\)의 rank
- \((a_{ij})\) : 카르탄 행렬
- 생성원 \(e_i,h_i,f_i , (i=1,2,\cdots, l)\)
- 세르 관계식
- \(\left[h_i,h_j\right]=0\)
- \(\left[e_i,f_j\right]=\delta _{i,j}h_i\)
- \(\left[h_i,e_j\right]=a_{i,j}e_j\)
- \(\left[h_i,f_j\right]=-a_{i,j}f_j\)
- \(\left(\text{ad} e_i\right){}^{1-a_{i,j}}\left(e_j\right)=0\) (\(i\neq j\))
- \(\left(\text{ad} f_i\right){}^{1-a_{i,j}}\left(f_j\right)=0\) (\(i\neq j\))
- ad 는 adjoint 의 약자
- \(\left(\text{ad} x\right){}^{3}\left(y\right)=[x, [x, [x, y]]]\)
- \(\left(\text{ad} x\right){}^{4}\left(y\right)=[x, [x, [x, [x, y]]]]\)
sl(3)의 예
- 카르탄 행렬\[\left( \begin{array}{cc} 2 & -1 \\ -1 & 2 \end{array} \right)\]
- \(i\neq j\) 일 때\[\left(\text{ad} e_i\right){}^{2}\left(e_j\right)=[e_i, [e_i,e_j]]=0\]\[\left(\text{ad} f_i\right){}^{2}\left(f_j\right)=[f_i, [f_i,f_j]]=0\]
- $e_1,e_2,h_1,h_2,f_1,f_2, \left[e_1,e_2\right], \left[f_1,f_2\right]$는 리대수의 기저가 된다
UEA 에서의 관계식
- 카르탄행렬이 \((a_{ij})\) 로 주어지는 리대수 \(\mathfrak{g}\)의 UEA \(U(\mathfrak{g})\) 에서 다음의 두 식
\[\left(\text{ad} e_i\right){}^{1-a_{i,j}}\left(e_j\right)=0, \quad i\neq j\] \[\left(\text{ad} f_i\right){}^{1-a_{i,j}}\left(f_j\right)=0, \quad i\neq j\]
- 다음과 같이 표현할 수 있다\[\sum_{k=0}^{1-a_{i,j}}(-1)^k \binom{1-a_{i,j}}{k}e_{i}^{1-a_{i,j}-k}e_{j}e_{i}^k=0\]\[\sum_{k=0}^{1-a_{i,j}}(-1)^k \binom{1-a_{i,j}}{k}f_{i}^{1-a_{i,j}-k}f_{j}f_{i}^k=0\]
- 풀어 쓰면 다음과 같은 형태가 된다\[x\otimes x\otimes y-2 x\otimes y\otimes x+y\otimes x\otimes x\]\[x\otimes x\otimes x\otimes y-3 x\otimes x\otimes y\otimes x+3 x\otimes y\otimes x\otimes x-y\otimes x\otimes x\otimes x\]\[x\otimes x\otimes x\otimes x\otimes y-4 x\otimes x\otimes x\otimes y\otimes x+6 x\otimes x\otimes y\otimes x\otimes x-4 x\otimes y\otimes x\otimes x\otimes x+y\otimes x\otimes x\otimes x\otimes x\]
Chevalley
리대수 \(\mathfrak{sl}(2)\)
- \(L=\langle E,F,H \rangle\)
- commutator
\[[E,F]=H\] \[[H,E]=2E\]\([H,F]=-2F\)
general case
- thm
Chevalley bases exist
- Q. why is it surprising?
- for example, taking $2x_{\alpha}$ instead of $x_{\alpha}$ still gives integral Lie bracket.
Kostant
- universal enveloping algebra의 PBW 기저
\[\{F^kH^lE^m|k,l,m\geq 0\}\]
- thm
For each choice of $r_i,s_{\alpha}\geq 0$, form the product in the given order of the elements $$ \binom{h_i}{r_i} $$ and the elements $$ \frac{x_{\alpha}^{s_{\alpha}}}{s_{\alpha}!} $$ for $i=1,\cdots, \ell$ and $\alpha\in \Phi$. Then the resulting collection if a basis for $U_{\mathbb{Z}}$ as a free $\mathbb{Z}$-module
- for examplem, one can take
\[\{\frac{F^k}{k!}\binom{H}{l}\frac{E^m}{m!}|k,l,m\geq 0\}\]
- \(\exp(tE)\) and \(\exp(tF)\) exist
- \(\exp(tH)\) does not exist instead \((1+t)^{H}=1+\binom{H}{1}t+\binom{H^2}{2!}t^2+\cdots\) exists