"Maass forms"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로) |
|||
1번째 줄: | 1번째 줄: | ||
− | + | ==introduction</h5> | |
* Hyperbolic distribution problems and half-integral weight Maass forms | * Hyperbolic distribution problems and half-integral weight Maass forms | ||
6번째 줄: | 6번째 줄: | ||
− | + | ==Eisenstein series</h5> | |
* z = x + iy in the upper half-plane | * z = x + iy in the upper half-plane | ||
19번째 줄: | 19번째 줄: | ||
− | + | ==Kloosterman sum</h5> | |
* used to estimate the Fourier coefficients of modular forms | * used to estimate the Fourier coefficients of modular forms | ||
31번째 줄: | 31번째 줄: | ||
− | + | ==history</h5> | |
* http://www.google.com/search?hl=en&tbs=tl:1&q= | * http://www.google.com/search?hl=en&tbs=tl:1&q= | ||
39번째 줄: | 39번째 줄: | ||
− | + | ==related items</h5> | |
* [[harmonic Maass forms|examples of harmonic Maass Forms]] | * [[harmonic Maass forms|examples of harmonic Maass Forms]] | ||
47번째 줄: | 47번째 줄: | ||
− | + | ==books</h5> | |
* Henryk Iwaniek, Emmanuel Kowalski (2004). Analytic number theory | * Henryk Iwaniek, Emmanuel Kowalski (2004). Analytic number theory | ||
60번째 줄: | 60번째 줄: | ||
− | + | ==encyclopedia</h5> | |
* [http://en.wikipedia.org/wiki/Kronecker_limit_formula ]http://en.wikipedia.org/wiki/Kronecker_limit_formula | * [http://en.wikipedia.org/wiki/Kronecker_limit_formula ]http://en.wikipedia.org/wiki/Kronecker_limit_formula | ||
70번째 줄: | 70번째 줄: | ||
− | + | ==question and answers(Math Overflow)</h5> | |
* http://mathoverflow.net/questions/52744/what-is-the-relationship-between-modular-forms-and-maass-forms | * http://mathoverflow.net/questions/52744/what-is-the-relationship-between-modular-forms-and-maass-forms | ||
* http://mathoverflow.net/search?q= | * http://mathoverflow.net/search?q= |
2012년 10월 28일 (일) 13:50 판
==introduction
- Hyperbolic distribution problems and half-integral weight Maass forms
- Automorphic forms correspond to representations that occur in L2(G/Γ). In the case when G is SL2, holomorphic modular forms correspond to (highest weight vectors of) discrete series representations of G, while Maass wave forms correspond to (spherical vectors of) continuous series representations of G.
==Eisenstein series
- z = x + iy in the upper half-plane
- Re(s) > 1
- definition
\(E(z,s) ={1\over 2}\sum_{(m,n)=1}{y^s\over|mz+n|^{2s}}\) - Maass form
\(\Delta E(z,s)=-y^2\left(\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}\right)E(z,s) = s(1-s)E(z,s)\) - functional equation
\(E^{*}(z,s) = \pi^{-s}\Gamma(s)\zeta(2s)E(z,s) \)
\(E^{*}(z,s)=E^{*}(z,1-s)\) - a unique pole of residue 3/π at s = 1
==Kloosterman sum
- used to estimate the Fourier coefficients of modular forms
- definition for prime p
\(S(a,b;p)=\sum_{1\leq x\leq p-1}{\exp(2i\pi (ax+b\bar{x})/p)},\quad\text{where}\quad x\bar{x}\equiv 1\text{ mod } p\) - generally defined as
\(K(a,b;m)=\sum_{0\leq x\leq m-1,\ gcd(x,m)=1 } e^{2\pi i (ax+bx^*)/m}\) - http://blogs.ethz.ch/kowalski/2010/02/26/the-fourth-moment-of-kloosterman-sums/
- Kloosterman, H. D. On the representation of numbers in the form ax² + by² + cz² + dt², Acta Mathematica 49 (1926), pp. 407-464
==history
==related items
==books
- Henryk Iwaniek, Emmanuel Kowalski (2004). Analytic number theory
- Lectures on modular functions of one complex variable (Tata Institute of Fundamental Research. Lectures on mathematics and physics. Mathematics, 29)
- Hans Maass, (pdf)
- 찾아볼 수학책
- http://gigapedia.info/1/Iwaniek
- http://gigapedia.info/1/Maass
==encyclopedia
- [1]http://en.wikipedia.org/wiki/Kronecker_limit_formula
- http://en.wikipedia.org/wiki/Real_analytic_Eisenstein_series
- http://en.wikipedia.org/wiki/Kloosterman_sum
==question and answers(Math Overflow)