"Maass forms"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
imported>Pythagoras0
잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
1번째 줄: 1번째 줄:
==introduction</h5>
+
==introduction==
  
 
* Hyperbolic distribution problems and half-integral weight Maass forms
 
* Hyperbolic distribution problems and half-integral weight Maass forms
6번째 줄: 6번째 줄:
 
 
 
 
  
==Eisenstein series</h5>
+
==Eisenstein series==
  
 
* z = x + iy in the upper half-plane
 
* z = x + iy in the upper half-plane
19번째 줄: 19번째 줄:
 
 
 
 
  
==Kloosterman sum</h5>
+
==Kloosterman sum==
  
 
* used to estimate the Fourier coefficients of modular forms
 
* used to estimate the Fourier coefficients of modular forms
31번째 줄: 31번째 줄:
 
 
 
 
  
==history</h5>
+
==history==
  
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
39번째 줄: 39번째 줄:
 
 
 
 
  
==related items</h5>
+
==related items==
  
 
* [[harmonic Maass forms|examples of harmonic Maass Forms]]
 
* [[harmonic Maass forms|examples of harmonic Maass Forms]]
47번째 줄: 47번째 줄:
 
 
 
 
  
==books</h5>
+
==books==
  
 
* Henryk Iwaniek, Emmanuel Kowalski (2004). Analytic number theory
 
* Henryk Iwaniek, Emmanuel Kowalski (2004). Analytic number theory
60번째 줄: 60번째 줄:
 
 
 
 
  
==encyclopedia</h5>
+
==encyclopedia==
  
 
* [http://en.wikipedia.org/wiki/Kronecker_limit_formula ]http://en.wikipedia.org/wiki/Kronecker_limit_formula
 
* [http://en.wikipedia.org/wiki/Kronecker_limit_formula ]http://en.wikipedia.org/wiki/Kronecker_limit_formula
70번째 줄: 70번째 줄:
 
 
 
 
  
==question and answers(Math Overflow)</h5>
+
==question and answers(Math Overflow)==
  
 
* http://mathoverflow.net/questions/52744/what-is-the-relationship-between-modular-forms-and-maass-forms
 
* http://mathoverflow.net/questions/52744/what-is-the-relationship-between-modular-forms-and-maass-forms
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=

2012년 10월 28일 (일) 14:31 판

introduction

  • Hyperbolic distribution problems and half-integral weight Maass forms
  • Automorphic forms correspond to representations that occur in L2(G/Γ). In the case when G is SL2, holomorphic modular forms correspond to (highest weight vectors of) discrete series representations of G, while Maass wave forms correspond to (spherical vectors of) continuous series representations of G.

 

Eisenstein series

  • z = x + iy in the upper half-plane
  • Re(s) > 1
  • definition
    \(E(z,s) ={1\over 2}\sum_{(m,n)=1}{y^s\over|mz+n|^{2s}}\)
  • Maass form
    \(\Delta E(z,s)=-y^2\left(\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}\right)E(z,s) = s(1-s)E(z,s)\)
  • functional equation
    \(E^{*}(z,s) = \pi^{-s}\Gamma(s)\zeta(2s)E(z,s) \)
    \(E^{*}(z,s)=E^{*}(z,1-s)\)
  • a unique pole of residue 3/π at s = 1

 

 

Kloosterman sum

 

 

history

 

 

related items

 

 

books

 

 

encyclopedia

 

 

question and answers(Math Overflow)