"Maass forms"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
75번째 줄: 75번째 줄:
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
 
[[분류:개인노트]][[분류:개인노트]]
 
[[분류:개인노트]][[분류:개인노트]]
 +
[[분류:math and physics]]
 
[[분류:math and physics]]
 
[[분류:math and physics]]

2012년 10월 29일 (월) 09:55 판

introduction

  • Hyperbolic distribution problems and half-integral weight Maass forms
  • Automorphic forms correspond to representations that occur in L2(G/Γ). In the case when G is SL2, holomorphic modular forms correspond to (highest weight vectors of) discrete series representations of G, while Maass wave forms correspond to (spherical vectors of) continuous series representations of G.

 

Eisenstein series

  • z = x + iy in the upper half-plane
  • Re(s) > 1
  • definition
    \(E(z,s) ={1\over 2}\sum_{(m,n)=1}{y^s\over|mz+n|^{2s}}\)
  • Maass form
    \(\Delta E(z,s)=-y^2\left(\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}\right)E(z,s) = s(1-s)E(z,s)\)
  • functional equation
    \(E^{*}(z,s) = \pi^{-s}\Gamma(s)\zeta(2s)E(z,s) \)
    \(E^{*}(z,s)=E^{*}(z,1-s)\)
  • a unique pole of residue 3/π at s = 1

 

 

Kloosterman sum

 

 

history

 

 

related items

 

 

books

 

 

encyclopedia

 

 

question and answers(Math Overflow)