"Maass forms"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
3번째 줄: 3번째 줄:
 
* Hyperbolic distribution problems and half-integral weight Maass forms
 
* Hyperbolic distribution problems and half-integral weight Maass forms
 
* Automorphic forms correspond to representations that occur in $L_2(\Gamma\backslash G)$.  
 
* Automorphic forms correspond to representations that occur in $L_2(\Gamma\backslash G)$.  
* In the case when $G$ is $SL_2$
+
* In the case when $G$ is $SL(2,\mathbb{R})$
 
** holomorphic modular forms correspond to (highest weight vectors of) discrete series representations of $G$
 
** holomorphic modular forms correspond to (highest weight vectors of) discrete series representations of $G$
 
** Maass wave forms correspond to (spherical vectors of) continuous series representations of G.
 
** Maass wave forms correspond to (spherical vectors of) continuous series representations of G.
  
 
 
 
 
 +
==definition==
  
==Maass form==
+
* A Maass (wave) form = continuous complex-valued function <em style="">f</em> of τ = <em style="">x</em> + <em style="">iy</em> in the upper half plane satisfying the following conditions:
 +
** <em style="">f</em> is invariant under the action of the group SL<sub style="line-height: 1em;">2</sub>('''Z''') on the upper half plane.
 +
** <em style="">f</em> is an eigenvector of the Laplacian operator <math>\Delta=-y^2\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)</math>
 +
** <em style="">f</em> is of at most polynomial growth at cusps of SL<sub style="line-height: 1em;">2</sub>('''Z''').
 +
Maass-Poincare series
 +
** Hejhal
 +
** real analytic eigenfunction of the Laplacian with known singularities at <math>i\infty</math>
 +
 
 +
 +
 
 +
 
 +
==fourier expansion==
 
* $f(z+1)=f(z)$ and $\Delta f=\lambda f$ where $\lambda = s(1-s)$ and $\Re s \geq 1/2$ imply
 
* $f(z+1)=f(z)$ and $\Delta f=\lambda f$ where $\lambda = s(1-s)$ and $\Re s \geq 1/2$ imply
 
$$
 
$$

2013년 4월 16일 (화) 08:37 판

introduction

  • Hyperbolic distribution problems and half-integral weight Maass forms
  • Automorphic forms correspond to representations that occur in $L_2(\Gamma\backslash G)$.
  • In the case when $G$ is $SL(2,\mathbb{R})$
    • holomorphic modular forms correspond to (highest weight vectors of) discrete series representations of $G$
    • Maass wave forms correspond to (spherical vectors of) continuous series representations of G.

 

definition

  • A Maass (wave) form = continuous complex-valued function f of τ = x + iy in the upper half plane satisfying the following conditions:
    • f is invariant under the action of the group SL2(Z) on the upper half plane.
    • f is an eigenvector of the Laplacian operator \(\Delta=-y^2\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)\)
    • f is of at most polynomial growth at cusps of SL2(Z).
  • Maass-Poincare series
    • Hejhal
    • real analytic eigenfunction of the Laplacian with known singularities at \(i\infty\)



fourier expansion

  • $f(z+1)=f(z)$ and $\Delta f=\lambda f$ where $\lambda = s(1-s)$ and $\Re s \geq 1/2$ imply

$$ f(x+iy)=\sum_{n\in \mathbb{Z}}a_n \sqrt{y}K_{s-1/2}(2\pi |n| y) e^{2\pi i n x} $$ where $K_{\nu}$ is the modified Bessel function of the second kind

  • under the assumption that $f(x+iy)=f(-x+iy)$, we get

$$ f(x+iy)=\sum_{n=1}^{\infty}a_n \sqrt{y}K_{s-1/2}(2\pi n y) \cos (2\pi i n x) $$


Eisenstein series

 

Kloosterman sum

 

related items

 

 

books

  • Henryk Iwaniek, Emmanuel Kowalski (2004). Analytic number theory
  • Lectures on modular functions of one complex variable (Tata Institute of Fundamental Research. Lectures on mathematics and physics. Mathematics, 29) 
    • Hans Maass, (pdf)


expositions


computational resource


encyclopedia


question and answers(Math Overflow)