"Calabi-Yau differential equations"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
(새 문서: ==articles== * Zudilin, V. V. 2011. “Arithmetic Hypergeometric Series.” Rossi\uı Skaya Akademiya Nauk. Moskovskoe Matematicheskoe Obshchestvo. Uspekhi Matematicheskikh Nauk 66 (2...)
 
imported>Pythagoras0
4번째 줄: 4번째 줄:
 
* Chen, Yao-Han, Yifan Yang, and Noriko Yui. 2008. “Monodromy of Picard-Fuchs Differential Equations for Calabi-Yau Threefolds.” Journal Für Die Reine Und Angewandte Mathematik. [Crelle’s Journal] 616: 167–203. doi:10.1515/CRELLE.2008.021.
 
* Chen, Yao-Han, Yifan Yang, and Noriko Yui. 2008. “Monodromy of Picard-Fuchs Differential Equations for Calabi-Yau Threefolds.” Journal Für Die Reine Und Angewandte Mathematik. [Crelle’s Journal] 616: 167–203. doi:10.1515/CRELLE.2008.021.
 
* Almkvist, Gert, and Wadim Zudilin. 2006. “Differential Equations, Mirror Maps and Zeta Values.” In Mirror Symmetry. V, 38:481–515. AMS/IP Stud. Adv. Math. Providence, RI: Amer. Math. Soc. http://www.ams.org/mathscinet-getitem?mr=2282972.
 
* Almkvist, Gert, and Wadim Zudilin. 2006. “Differential Equations, Mirror Maps and Zeta Values.” In Mirror Symmetry. V, 38:481–515. AMS/IP Stud. Adv. Math. Providence, RI: Amer. Math. Soc. http://www.ams.org/mathscinet-getitem?mr=2282972.
 +
* Stienstra, Jan, and Frits Beukers. 1985. “On the Picard-Fuchs Equation and the Formal Brauer Group of Certain Elliptic $K3$-Surfaces.” Mathematische Annalen 271 (2): 269–304. doi:10.1007/BF01455990.
 +
* Beukers, F., and C. A. M. Peters. 1984. “A Family of $K3$ Surfaces and $\zeta (3)$.” Journal Für Die Reine Und Angewandte Mathematik 351: 42–54. doi:10.1515/crll.1984.351.42.

2013년 12월 27일 (금) 03:48 판

articles

  • Zudilin, V. V. 2011. “Arithmetic Hypergeometric Series.” Rossi\uı Skaya Akademiya Nauk. Moskovskoe Matematicheskoe Obshchestvo. Uspekhi Matematicheskikh Nauk 66 (2(398)): 163–216. doi:10.1070/RM2011v066n02ABEH004742.
  • Yang, Yifan, and Wadim Zudilin. 2010. “On $\rm Sp_4$ Modularity of Picard-Fuchs Differential Equations for Calabi-Yau Threefolds.” In Gems in Experimental Mathematics, 517:381–413. Contemp. Math. Providence, RI: Amer. Math. Soc. http://www.ams.org/mathscinet-getitem?mr=2731075.
  • Chen, Yao-Han, Yifan Yang, and Noriko Yui. 2008. “Monodromy of Picard-Fuchs Differential Equations for Calabi-Yau Threefolds.” Journal Für Die Reine Und Angewandte Mathematik. [Crelle’s Journal] 616: 167–203. doi:10.1515/CRELLE.2008.021.
  • Almkvist, Gert, and Wadim Zudilin. 2006. “Differential Equations, Mirror Maps and Zeta Values.” In Mirror Symmetry. V, 38:481–515. AMS/IP Stud. Adv. Math. Providence, RI: Amer. Math. Soc. http://www.ams.org/mathscinet-getitem?mr=2282972.
  • Stienstra, Jan, and Frits Beukers. 1985. “On the Picard-Fuchs Equation and the Formal Brauer Group of Certain Elliptic $K3$-Surfaces.” Mathematische Annalen 271 (2): 269–304. doi:10.1007/BF01455990.
  • Beukers, F., and C. A. M. Peters. 1984. “A Family of $K3$ Surfaces and $\zeta (3)$.” Journal Für Die Reine Und Angewandte Mathematik 351: 42–54. doi:10.1515/crll.1984.351.42.